Cargando…
Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction
BACKGROUND: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Cl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691397/ https://www.ncbi.nlm.nih.gov/pubmed/29145825 http://dx.doi.org/10.1186/s12864-017-4245-x |
_version_ | 1783279780928421888 |
---|---|
author | Wu, Chen Twort, Victoria G. Crowhurst, Ross N. Newcomb, Richard D. Buckley, Thomas R. |
author_facet | Wu, Chen Twort, Victoria G. Crowhurst, Ross N. Newcomb, Richard D. Buckley, Thomas R. |
author_sort | Wu, Chen |
collection | PubMed |
description | BACKGROUND: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. RESULTS: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. CONCLUSIONS: The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4245-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5691397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-56913972017-11-24 Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction Wu, Chen Twort, Victoria G. Crowhurst, Ross N. Newcomb, Richard D. Buckley, Thomas R. BMC Genomics Research Article BACKGROUND: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. RESULTS: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. CONCLUSIONS: The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4245-x) contains supplementary material, which is available to authorized users. BioMed Central 2017-11-16 /pmc/articles/PMC5691397/ /pubmed/29145825 http://dx.doi.org/10.1186/s12864-017-4245-x Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Wu, Chen Twort, Victoria G. Crowhurst, Ross N. Newcomb, Richard D. Buckley, Thomas R. Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction |
title | Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction |
title_full | Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction |
title_fullStr | Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction |
title_full_unstemmed | Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction |
title_short | Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction |
title_sort | assembling large genomes: analysis of the stick insect (clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691397/ https://www.ncbi.nlm.nih.gov/pubmed/29145825 http://dx.doi.org/10.1186/s12864-017-4245-x |
work_keys_str_mv | AT wuchen assemblinglargegenomesanalysisofthestickinsectclitarchushookerigenomerevealsahighrepeatcontentandsexbiasedgenesassociatedwithreproduction AT twortvictoriag assemblinglargegenomesanalysisofthestickinsectclitarchushookerigenomerevealsahighrepeatcontentandsexbiasedgenesassociatedwithreproduction AT crowhurstrossn assemblinglargegenomesanalysisofthestickinsectclitarchushookerigenomerevealsahighrepeatcontentandsexbiasedgenesassociatedwithreproduction AT newcombrichardd assemblinglargegenomesanalysisofthestickinsectclitarchushookerigenomerevealsahighrepeatcontentandsexbiasedgenesassociatedwithreproduction AT buckleythomasr assemblinglargegenomesanalysisofthestickinsectclitarchushookerigenomerevealsahighrepeatcontentandsexbiasedgenesassociatedwithreproduction |