Cargando…

Role of aramchol in steatohepatitis and fibrosis in mice

Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease (NAFLD) that sets the stage for further liver damage. The mechanism for the progression of NASH involves multiple parallel hits, including oxidative stress, mitochondrial dysfunction, inflammation, and other...

Descripción completa

Detalles Bibliográficos
Autores principales: Iruarrizaga‐Lejarreta, Marta, Varela‐Rey, Marta, Fernández‐Ramos, David, Martínez‐Arranz, Ibon, Delgado, Teresa C, Simon, Jorge, Gutiérrez‐de Juan, Virginia, delaCruz‐Villar, Laura, Azkargorta, Mikel, Lavin, José L., Mayo, Rebeca, Van Liempd, Sebastiaan M., Aurrekoetxea, Igor, Buqué, Xabier, Delle Cave, Donatella, Peña, Arantza, Rodríguez‐Cuesta, Juan, Aransay, Ana M., Elortza, Felix, Falcón‐Pérez, Juan M., Aspichueta, Patricia, Hayardeny, Liat, Noureddin, Mazen, Sanyal, Arun J., Alonso, Cristina, Anguita, Juan, Martínez‐Chantar, María Luz, Lu, Shelly C., Mato, José M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691602/
https://www.ncbi.nlm.nih.gov/pubmed/29159325
http://dx.doi.org/10.1002/hep4.1107
_version_ 1783279820157747200
author Iruarrizaga‐Lejarreta, Marta
Varela‐Rey, Marta
Fernández‐Ramos, David
Martínez‐Arranz, Ibon
Delgado, Teresa C
Simon, Jorge
Gutiérrez‐de Juan, Virginia
delaCruz‐Villar, Laura
Azkargorta, Mikel
Lavin, José L.
Mayo, Rebeca
Van Liempd, Sebastiaan M.
Aurrekoetxea, Igor
Buqué, Xabier
Delle Cave, Donatella
Peña, Arantza
Rodríguez‐Cuesta, Juan
Aransay, Ana M.
Elortza, Felix
Falcón‐Pérez, Juan M.
Aspichueta, Patricia
Hayardeny, Liat
Noureddin, Mazen
Sanyal, Arun J.
Alonso, Cristina
Anguita, Juan
Martínez‐Chantar, María Luz
Lu, Shelly C.
Mato, José M.
author_facet Iruarrizaga‐Lejarreta, Marta
Varela‐Rey, Marta
Fernández‐Ramos, David
Martínez‐Arranz, Ibon
Delgado, Teresa C
Simon, Jorge
Gutiérrez‐de Juan, Virginia
delaCruz‐Villar, Laura
Azkargorta, Mikel
Lavin, José L.
Mayo, Rebeca
Van Liempd, Sebastiaan M.
Aurrekoetxea, Igor
Buqué, Xabier
Delle Cave, Donatella
Peña, Arantza
Rodríguez‐Cuesta, Juan
Aransay, Ana M.
Elortza, Felix
Falcón‐Pérez, Juan M.
Aspichueta, Patricia
Hayardeny, Liat
Noureddin, Mazen
Sanyal, Arun J.
Alonso, Cristina
Anguita, Juan
Martínez‐Chantar, María Luz
Lu, Shelly C.
Mato, José M.
author_sort Iruarrizaga‐Lejarreta, Marta
collection PubMed
description Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease (NAFLD) that sets the stage for further liver damage. The mechanism for the progression of NASH involves multiple parallel hits, including oxidative stress, mitochondrial dysfunction, inflammation, and others. Manipulation of any of these pathways may be an approach to prevent NASH development and progression. Arachidyl‐amido cholanoic acid (Aramchol) is presently in a phase IIb NASH study. The aim of the present study was to investigate Aramchol's mechanism of action and its effect on fibrosis using the methionine‐ and choline‐deficient (MCD) diet model of NASH. We collected liver and serum from mice fed an MCD diet containing 0.1% methionine (0.1MCD) for 4 weeks; these mice developed steatohepatitis and fibrosis. We also collected liver and serum from mice receiving a control diet, and metabolomes and proteomes were determined for both groups. The 0.1MCD‐fed mice were given Aramchol (5 mg/kg/day for the last 2 weeks), and liver samples were analyzed histologically. Aramchol administration reduced features of steatohepatitis and fibrosis in 0.1MCD‐fed mice. Aramchol down‐regulated stearoyl‐coenyzme A desaturase 1, a key enzyme involved in triglyceride biosynthesis and the loss of which enhances fatty acid β‐oxidation. Aramchol increased the flux through the transsulfuration pathway, leading to a rise in glutathione (GSH) and the GSH/oxidized GSH ratio, the main cellular antioxidant that maintains intracellular redox status. Comparison of the serum metabolomic pattern between 0.1MCD‐fed mice and patients with NAFLD showed a substantial overlap. Conclusion: Aramchol treatment improved steatohepatitis and fibrosis by 1) decreasing stearoyl‐coenyzme A desaturase 1 and 2) increasing the flux through the transsulfuration pathway maintaining cellular redox homeostasis. We also demonstrated that the 0.1MCD model resembles the metabolic phenotype observed in about 50% of patients with NAFLD, which supports the potential use of Aramchol in NASH treatment. (Hepatology Communications 2017;1:911–927)
format Online
Article
Text
id pubmed-5691602
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-56916022018-02-05 Role of aramchol in steatohepatitis and fibrosis in mice Iruarrizaga‐Lejarreta, Marta Varela‐Rey, Marta Fernández‐Ramos, David Martínez‐Arranz, Ibon Delgado, Teresa C Simon, Jorge Gutiérrez‐de Juan, Virginia delaCruz‐Villar, Laura Azkargorta, Mikel Lavin, José L. Mayo, Rebeca Van Liempd, Sebastiaan M. Aurrekoetxea, Igor Buqué, Xabier Delle Cave, Donatella Peña, Arantza Rodríguez‐Cuesta, Juan Aransay, Ana M. Elortza, Felix Falcón‐Pérez, Juan M. Aspichueta, Patricia Hayardeny, Liat Noureddin, Mazen Sanyal, Arun J. Alonso, Cristina Anguita, Juan Martínez‐Chantar, María Luz Lu, Shelly C. Mato, José M. Hepatol Commun Original Articles Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease (NAFLD) that sets the stage for further liver damage. The mechanism for the progression of NASH involves multiple parallel hits, including oxidative stress, mitochondrial dysfunction, inflammation, and others. Manipulation of any of these pathways may be an approach to prevent NASH development and progression. Arachidyl‐amido cholanoic acid (Aramchol) is presently in a phase IIb NASH study. The aim of the present study was to investigate Aramchol's mechanism of action and its effect on fibrosis using the methionine‐ and choline‐deficient (MCD) diet model of NASH. We collected liver and serum from mice fed an MCD diet containing 0.1% methionine (0.1MCD) for 4 weeks; these mice developed steatohepatitis and fibrosis. We also collected liver and serum from mice receiving a control diet, and metabolomes and proteomes were determined for both groups. The 0.1MCD‐fed mice were given Aramchol (5 mg/kg/day for the last 2 weeks), and liver samples were analyzed histologically. Aramchol administration reduced features of steatohepatitis and fibrosis in 0.1MCD‐fed mice. Aramchol down‐regulated stearoyl‐coenyzme A desaturase 1, a key enzyme involved in triglyceride biosynthesis and the loss of which enhances fatty acid β‐oxidation. Aramchol increased the flux through the transsulfuration pathway, leading to a rise in glutathione (GSH) and the GSH/oxidized GSH ratio, the main cellular antioxidant that maintains intracellular redox status. Comparison of the serum metabolomic pattern between 0.1MCD‐fed mice and patients with NAFLD showed a substantial overlap. Conclusion: Aramchol treatment improved steatohepatitis and fibrosis by 1) decreasing stearoyl‐coenyzme A desaturase 1 and 2) increasing the flux through the transsulfuration pathway maintaining cellular redox homeostasis. We also demonstrated that the 0.1MCD model resembles the metabolic phenotype observed in about 50% of patients with NAFLD, which supports the potential use of Aramchol in NASH treatment. (Hepatology Communications 2017;1:911–927) John Wiley and Sons Inc. 2017-10-04 /pmc/articles/PMC5691602/ /pubmed/29159325 http://dx.doi.org/10.1002/hep4.1107 Text en © 2017 The Authors. Hepatology Communications published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Iruarrizaga‐Lejarreta, Marta
Varela‐Rey, Marta
Fernández‐Ramos, David
Martínez‐Arranz, Ibon
Delgado, Teresa C
Simon, Jorge
Gutiérrez‐de Juan, Virginia
delaCruz‐Villar, Laura
Azkargorta, Mikel
Lavin, José L.
Mayo, Rebeca
Van Liempd, Sebastiaan M.
Aurrekoetxea, Igor
Buqué, Xabier
Delle Cave, Donatella
Peña, Arantza
Rodríguez‐Cuesta, Juan
Aransay, Ana M.
Elortza, Felix
Falcón‐Pérez, Juan M.
Aspichueta, Patricia
Hayardeny, Liat
Noureddin, Mazen
Sanyal, Arun J.
Alonso, Cristina
Anguita, Juan
Martínez‐Chantar, María Luz
Lu, Shelly C.
Mato, José M.
Role of aramchol in steatohepatitis and fibrosis in mice
title Role of aramchol in steatohepatitis and fibrosis in mice
title_full Role of aramchol in steatohepatitis and fibrosis in mice
title_fullStr Role of aramchol in steatohepatitis and fibrosis in mice
title_full_unstemmed Role of aramchol in steatohepatitis and fibrosis in mice
title_short Role of aramchol in steatohepatitis and fibrosis in mice
title_sort role of aramchol in steatohepatitis and fibrosis in mice
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691602/
https://www.ncbi.nlm.nih.gov/pubmed/29159325
http://dx.doi.org/10.1002/hep4.1107
work_keys_str_mv AT iruarrizagalejarretamarta roleofaramcholinsteatohepatitisandfibrosisinmice
AT varelareymarta roleofaramcholinsteatohepatitisandfibrosisinmice
AT fernandezramosdavid roleofaramcholinsteatohepatitisandfibrosisinmice
AT martinezarranzibon roleofaramcholinsteatohepatitisandfibrosisinmice
AT delgadoteresac roleofaramcholinsteatohepatitisandfibrosisinmice
AT simonjorge roleofaramcholinsteatohepatitisandfibrosisinmice
AT gutierrezdejuanvirginia roleofaramcholinsteatohepatitisandfibrosisinmice
AT delacruzvillarlaura roleofaramcholinsteatohepatitisandfibrosisinmice
AT azkargortamikel roleofaramcholinsteatohepatitisandfibrosisinmice
AT lavinjosel roleofaramcholinsteatohepatitisandfibrosisinmice
AT mayorebeca roleofaramcholinsteatohepatitisandfibrosisinmice
AT vanliempdsebastiaanm roleofaramcholinsteatohepatitisandfibrosisinmice
AT aurrekoetxeaigor roleofaramcholinsteatohepatitisandfibrosisinmice
AT buquexabier roleofaramcholinsteatohepatitisandfibrosisinmice
AT dellecavedonatella roleofaramcholinsteatohepatitisandfibrosisinmice
AT penaarantza roleofaramcholinsteatohepatitisandfibrosisinmice
AT rodriguezcuestajuan roleofaramcholinsteatohepatitisandfibrosisinmice
AT aransayanam roleofaramcholinsteatohepatitisandfibrosisinmice
AT elortzafelix roleofaramcholinsteatohepatitisandfibrosisinmice
AT falconperezjuanm roleofaramcholinsteatohepatitisandfibrosisinmice
AT aspichuetapatricia roleofaramcholinsteatohepatitisandfibrosisinmice
AT hayardenyliat roleofaramcholinsteatohepatitisandfibrosisinmice
AT noureddinmazen roleofaramcholinsteatohepatitisandfibrosisinmice
AT sanyalarunj roleofaramcholinsteatohepatitisandfibrosisinmice
AT alonsocristina roleofaramcholinsteatohepatitisandfibrosisinmice
AT anguitajuan roleofaramcholinsteatohepatitisandfibrosisinmice
AT martinezchantarmarialuz roleofaramcholinsteatohepatitisandfibrosisinmice
AT lushellyc roleofaramcholinsteatohepatitisandfibrosisinmice
AT matojosem roleofaramcholinsteatohepatitisandfibrosisinmice