Cargando…
Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium
BACKGROUND: Volatile oils from Artemisiae argyi folium (VOAAF) is reported with hepatotoxicity, but the underlying mechanism is still unclear. METHODS: In the present study this molecular mechanism was explored with the Ingenuity Pathway Analysis (IPA). The chemical components of the VOAAF were sear...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691807/ https://www.ncbi.nlm.nih.gov/pubmed/29145837 http://dx.doi.org/10.1186/s12906-017-1997-4 |
_version_ | 1783279868207693824 |
---|---|
author | Liu, Hongjie Zhan, Sha Zhang, Yan Ma, Yan Chen, Liang Chen, Lingxiu Dong, Hanqiu Ma, Min Zhang, Zhe |
author_facet | Liu, Hongjie Zhan, Sha Zhang, Yan Ma, Yan Chen, Liang Chen, Lingxiu Dong, Hanqiu Ma, Min Zhang, Zhe |
author_sort | Liu, Hongjie |
collection | PubMed |
description | BACKGROUND: Volatile oils from Artemisiae argyi folium (VOAAF) is reported with hepatotoxicity, but the underlying mechanism is still unclear. METHODS: In the present study this molecular mechanism was explored with the Ingenuity Pathway Analysis (IPA). The chemical components of the VOAAF were searched in the database, and their target proteins were all identified in the PubChem, while drug-induced liver injury (DILI) genes were searched in the PubMed gene databases. The molecular network of protein targets for VOAAF and DILI genes was built with the IPA. The canonical pathways between the 2 networks were compared to decipher the molecular mechanisms of the liver injury induced by VOAAF. RESULTS: There were 159 target proteins for VOAAF and 338 genes related to DILI identified, which were further analyzed in the IPA. The canonical pathway comparison showed that VOAAF and DILI both worked on aryl hydrocarbon receptor (AHR), lipopolysaccharide (LPS)/interleukin 1 (IL-1) mediated inhibition of retinoid X receptor (RXR) function, pregnane X receptor (PXR)/RXR activation, xenobiotic metabolism, peroxisome proliferator-activated receptor (PPAR), hepatic cholestasis, farnesoid X receptor (FXR)/RXR activation, and glucocorticoid receptor. CONCLUSION: VOAAF-induced liver injury may be involved in many pathways in which the AHR signaling and LPS/IL-1 mediated inhibition of RXR function pathways could be the most vital. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi: 10.1186/s12906-017-1997-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5691807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-56918072017-11-24 Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium Liu, Hongjie Zhan, Sha Zhang, Yan Ma, Yan Chen, Liang Chen, Lingxiu Dong, Hanqiu Ma, Min Zhang, Zhe BMC Complement Altern Med Research Article BACKGROUND: Volatile oils from Artemisiae argyi folium (VOAAF) is reported with hepatotoxicity, but the underlying mechanism is still unclear. METHODS: In the present study this molecular mechanism was explored with the Ingenuity Pathway Analysis (IPA). The chemical components of the VOAAF were searched in the database, and their target proteins were all identified in the PubChem, while drug-induced liver injury (DILI) genes were searched in the PubMed gene databases. The molecular network of protein targets for VOAAF and DILI genes was built with the IPA. The canonical pathways between the 2 networks were compared to decipher the molecular mechanisms of the liver injury induced by VOAAF. RESULTS: There were 159 target proteins for VOAAF and 338 genes related to DILI identified, which were further analyzed in the IPA. The canonical pathway comparison showed that VOAAF and DILI both worked on aryl hydrocarbon receptor (AHR), lipopolysaccharide (LPS)/interleukin 1 (IL-1) mediated inhibition of retinoid X receptor (RXR) function, pregnane X receptor (PXR)/RXR activation, xenobiotic metabolism, peroxisome proliferator-activated receptor (PPAR), hepatic cholestasis, farnesoid X receptor (FXR)/RXR activation, and glucocorticoid receptor. CONCLUSION: VOAAF-induced liver injury may be involved in many pathways in which the AHR signaling and LPS/IL-1 mediated inhibition of RXR function pathways could be the most vital. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi: 10.1186/s12906-017-1997-4) contains supplementary material, which is available to authorized users. BioMed Central 2017-11-16 /pmc/articles/PMC5691807/ /pubmed/29145837 http://dx.doi.org/10.1186/s12906-017-1997-4 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Liu, Hongjie Zhan, Sha Zhang, Yan Ma, Yan Chen, Liang Chen, Lingxiu Dong, Hanqiu Ma, Min Zhang, Zhe Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium |
title | Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium |
title_full | Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium |
title_fullStr | Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium |
title_full_unstemmed | Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium |
title_short | Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium |
title_sort | molecular network-based analysis of the mechanism of liver injury induced by volatile oils from artemisiae argyi folium |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691807/ https://www.ncbi.nlm.nih.gov/pubmed/29145837 http://dx.doi.org/10.1186/s12906-017-1997-4 |
work_keys_str_mv | AT liuhongjie molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium AT zhansha molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium AT zhangyan molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium AT mayan molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium AT chenliang molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium AT chenlingxiu molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium AT donghanqiu molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium AT mamin molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium AT zhangzhe molecularnetworkbasedanalysisofthemechanismofliverinjuryinducedbyvolatileoilsfromartemisiaeargyifolium |