Cargando…

Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution

The chromium (Cr) isotope system has emerged as a potential proxy for tracing the Earth’s atmospheric evolution based on a redox-dependent framework for Cr mobilization and isotope fractionation. Although studies have demonstrated that redox-independent pathways can also mobilize Cr, no quantitative...

Descripción completa

Detalles Bibliográficos
Autores principales: Saad, Emily M., Wang, Xiangli, Planavsky, Noah J., Reinhard, Christopher T., Tang, Yuanzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5693864/
https://www.ncbi.nlm.nih.gov/pubmed/29150598
http://dx.doi.org/10.1038/s41467-017-01694-y
Descripción
Sumario:The chromium (Cr) isotope system has emerged as a potential proxy for tracing the Earth’s atmospheric evolution based on a redox-dependent framework for Cr mobilization and isotope fractionation. Although studies have demonstrated that redox-independent pathways can also mobilize Cr, no quantitative constraints exist on the associated isotope fractionations. Here we survey the effects of common environmental ligands on the dissolution of Cr(III)-(oxy)hydroxide solids and associated Cr isotope fractionation. For a variety of organic acids and siderophores, δ(53)Cr values of dissolved Cr(III) are −0.27 to 1.23‰, within the range of previously observed Cr isotope signatures in rock records linked to Cr redox cycling. Thus, ligand-promoted dissolution of Cr-containing solids, a redox-independent process, must be taken into account when using sedimentary Cr isotope signatures to diagnose atmospheric oxygen levels. This work provides a step towards establishing a more robust framework for using Cr isotopes to track the evolution of the Earth’s atmosphere.