Cargando…

A theoretical quest for high temperature superconductivity on the example of low-dimensional carbon structures

High temperature superconductivity does not necessarily require correlated electron systems with complex competing or coexisting orders. Instead, it may be achieved in a phonon-mediated classical superconductor having a high Debye temperature and large electronic density of states at the Fermi level...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, C. H., Lortz, R., Buntov, E. A., Kasimova, R. E., Zatsepin, A. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5693954/
https://www.ncbi.nlm.nih.gov/pubmed/29150653
http://dx.doi.org/10.1038/s41598-017-16038-5
Descripción
Sumario:High temperature superconductivity does not necessarily require correlated electron systems with complex competing or coexisting orders. Instead, it may be achieved in a phonon-mediated classical superconductor having a high Debye temperature and large electronic density of states at the Fermi level in a material with light atoms and strong covalent bonds. Quasi-1D conductors seem promising due to the Van Hove singularities in their electronic density of states. In this sense, quasi-1D carbon structures are good candidates. In thin carbon nanotubes, superconductivity at ~15 K has been reported, and it is likely the strong curvature of the graphene sheet which enhances the electron-phonon coupling. We use an ab-initio approach to optimize superconducting quasi-1D carbon structures. We start by calculating a T (c) of 13.9 K for (4.2) carbon nanotubes (CNT) that agrees well with experiments. Then we reduce the CNT to a ring, open the ring to form chains, optimize bond length and kink structure, and finally form a new type of carbon ring that reaches a T (c) value of 115 K.