Cargando…
Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD
BACKGROUND: Animal growth is often constrained by unfavourable conditions and divergences from optimal body size can be detrimental to an individual’s fitness, particularly in species with determinate growth and a narrow time-frame for life-time reproduction. Growth restriction in early juvenile sta...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694211/ https://www.ncbi.nlm.nih.gov/pubmed/29158981 http://dx.doi.org/10.7717/peerj.4050 |
_version_ | 1783280095042994176 |
---|---|
author | Neumann, Rainer Ruppel, Nicole Schneider, Jutta M. |
author_facet | Neumann, Rainer Ruppel, Nicole Schneider, Jutta M. |
author_sort | Neumann, Rainer |
collection | PubMed |
description | BACKGROUND: Animal growth is often constrained by unfavourable conditions and divergences from optimal body size can be detrimental to an individual’s fitness, particularly in species with determinate growth and a narrow time-frame for life-time reproduction. Growth restriction in early juvenile stages can later be compensated by means of plastic developmental responses, such as adaptive catch-up growth (the compensation of growth deficits through delayed development). Although sex differences regarding the mode and degree of growth compensation have been coherently predicted from sex-specific fitness payoffs, inconsistent results imply a need for further research. We used the African Nephila senegalensis, representing an extreme case of female-biased sexual size dimorphism (SSD), to study fitness implications of sex-specific growth compensation. We predicted effective catch-up growth in early food-restricted females to result in full compensation of growth deficits and a life-time fecundity (LTF) equivalent to unrestricted females. Based on a stronger trade-off between size-related benefits and costs of a delayed maturation, we expected less effective catch-up growth in males. METHODS: We tracked the development of over one thousand spiders in different feeding treatments, e.g., comprising a fixed period of early low feeding conditions followed by unrestricted feeding conditions, permanent unrestricted feeding conditions, or permanent low feeding conditions as a control. In a second experimental section, we assessed female fitness by measuring LTF in a subset of females. In addition, we tested whether compensatory development affected the reproductive lifespan in both sexes and analysed genotype-by-treatment interactions as a potential cause of variation in life-history traits. RESULTS: Both sexes delayed maturation to counteract early growth restriction, but only females achieved full compensation of adult body size. Female catch-up growth resulted in equivalent LTF compared to unrestricted females. We found significant interactions between experimental treatments and sex as well as between treatments and family lineage, suggesting that family-specific responses contribute to the unusually large variation of life-history traits in Nephila spiders. Our feeding treatments had no effect on the reproductive lifespan in either sex. DISCUSSION: Our findings are in line with predictions of life-history theory and corroborate strong fecundity selection to result in full female growth compensation. Males showed incomplete growth compensation despite a delayed development, indicating relaxed selection on large size and a stronger trade-off between late maturation and size-related benefits. We suggest that moderate catch-up growth in males is still adaptive as a ‘bet-hedging’ strategy to disperse unavoidable costs between life-history traits affected by early growth restriction (the duration of development and adult size). |
format | Online Article Text |
id | pubmed-5694211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56942112017-11-20 Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD Neumann, Rainer Ruppel, Nicole Schneider, Jutta M. PeerJ Animal Behavior BACKGROUND: Animal growth is often constrained by unfavourable conditions and divergences from optimal body size can be detrimental to an individual’s fitness, particularly in species with determinate growth and a narrow time-frame for life-time reproduction. Growth restriction in early juvenile stages can later be compensated by means of plastic developmental responses, such as adaptive catch-up growth (the compensation of growth deficits through delayed development). Although sex differences regarding the mode and degree of growth compensation have been coherently predicted from sex-specific fitness payoffs, inconsistent results imply a need for further research. We used the African Nephila senegalensis, representing an extreme case of female-biased sexual size dimorphism (SSD), to study fitness implications of sex-specific growth compensation. We predicted effective catch-up growth in early food-restricted females to result in full compensation of growth deficits and a life-time fecundity (LTF) equivalent to unrestricted females. Based on a stronger trade-off between size-related benefits and costs of a delayed maturation, we expected less effective catch-up growth in males. METHODS: We tracked the development of over one thousand spiders in different feeding treatments, e.g., comprising a fixed period of early low feeding conditions followed by unrestricted feeding conditions, permanent unrestricted feeding conditions, or permanent low feeding conditions as a control. In a second experimental section, we assessed female fitness by measuring LTF in a subset of females. In addition, we tested whether compensatory development affected the reproductive lifespan in both sexes and analysed genotype-by-treatment interactions as a potential cause of variation in life-history traits. RESULTS: Both sexes delayed maturation to counteract early growth restriction, but only females achieved full compensation of adult body size. Female catch-up growth resulted in equivalent LTF compared to unrestricted females. We found significant interactions between experimental treatments and sex as well as between treatments and family lineage, suggesting that family-specific responses contribute to the unusually large variation of life-history traits in Nephila spiders. Our feeding treatments had no effect on the reproductive lifespan in either sex. DISCUSSION: Our findings are in line with predictions of life-history theory and corroborate strong fecundity selection to result in full female growth compensation. Males showed incomplete growth compensation despite a delayed development, indicating relaxed selection on large size and a stronger trade-off between late maturation and size-related benefits. We suggest that moderate catch-up growth in males is still adaptive as a ‘bet-hedging’ strategy to disperse unavoidable costs between life-history traits affected by early growth restriction (the duration of development and adult size). PeerJ Inc. 2017-11-15 /pmc/articles/PMC5694211/ /pubmed/29158981 http://dx.doi.org/10.7717/peerj.4050 Text en ©2017 Neumann et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Animal Behavior Neumann, Rainer Ruppel, Nicole Schneider, Jutta M. Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD |
title | Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD |
title_full | Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD |
title_fullStr | Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD |
title_full_unstemmed | Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD |
title_short | Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD |
title_sort | fitness implications of sex-specific catch-up growth in nephila senegalensis, a spider with extreme reversed ssd |
topic | Animal Behavior |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694211/ https://www.ncbi.nlm.nih.gov/pubmed/29158981 http://dx.doi.org/10.7717/peerj.4050 |
work_keys_str_mv | AT neumannrainer fitnessimplicationsofsexspecificcatchupgrowthinnephilasenegalensisaspiderwithextremereversedssd AT ruppelnicole fitnessimplicationsofsexspecificcatchupgrowthinnephilasenegalensisaspiderwithextremereversedssd AT schneiderjuttam fitnessimplicationsofsexspecificcatchupgrowthinnephilasenegalensisaspiderwithextremereversedssd |