Cargando…
Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases
The rise of neuroimaging in research and clinical practice, together with the development of new machine learning techniques has strongly encouraged the Computer Aided Diagnosis (CAD) of different diseases and disorders. However, these algorithms are often tested in proprietary datasets to which the...
Autores principales: | Martinez-Murcia, Francisco J., Górriz, Juan M., Ramírez, Javier, Illán, Ignacio A., Segovia, Fermín, Castillo-Barnes, Diego, Salas-Gonzalez, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694626/ https://www.ncbi.nlm.nih.gov/pubmed/29184492 http://dx.doi.org/10.3389/fninf.2017.00065 |
Ejemplares similares
-
Robust Ensemble Classification Methodology for I123-Ioflupane SPECT Images and Multiple Heterogeneous Biomarkers in the Diagnosis of Parkinson's Disease
por: Castillo-Barnes, Diego, et al.
Publicado: (2018) -
A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
por: Castillo-Barnes, Diego, et al.
Publicado: (2017) -
Preprocessing of (18)F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution
por: Segovia, Fermín, et al.
Publicado: (2017) -
Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks
por: Segovia, Fermín, et al.
Publicado: (2015) -
Combining PET Images and Neuropsychological Test Data for Automatic Diagnosis of Alzheimer's Disease
por: Segovia, Fermín, et al.
Publicado: (2014)