Cargando…
Machine learning meets complex networks via coalescent embedding in the hyperbolic space
Physicists recently observed that realistic complex networks emerge as discrete samples from a continuous hyperbolic geometry enclosed in a circle: the radius represents the node centrality and the angular displacement between two nodes resembles their topological proximity. The hyperbolic circle ai...
Autores principales: | Muscoloni, Alessandro, Thomas, Josephine Maria, Ciucci, Sara, Bianconi, Ginestra, Cannistraci, Carlo Vittorio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694768/ https://www.ncbi.nlm.nih.gov/pubmed/29151574 http://dx.doi.org/10.1038/s41467-017-01825-5 |
Ejemplares similares
-
Optimisation of the coalescent hyperbolic embedding of complex networks
por: Kovács, Bianka, et al.
Publicado: (2021) -
“Stealing fire or stacking knowledge” by machine intelligence to model link prediction in complex networks
por: Muscoloni, Alessandro, et al.
Publicado: (2022) -
Geometrical congruence, greedy navigability and myopic transfer in complex networks and brain connectomes
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2022) -
Emergent Hyperbolic Network Geometry
por: Bianconi, Ginestra, et al.
Publicado: (2017) -
Spatial Reconstruction of Oligo and Single Cells by De Novo Coalescent Embedding of Transcriptomic Networks
por: Zhao, Yuxuan, et al.
Publicado: (2023)