Cargando…
Predicting Long-Term Cognitive Outcome Following Breast Cancer with Pre-Treatment Resting State fMRI and Random Forest Machine Learning
We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34–65) prior to any treatment, post-chem...
Autores principales: | Kesler, Shelli R., Rao, Arvind, Blayney, Douglas W., Oakley-Girvan, Ingrid A., Karuturi, Meghan, Palesh, Oxana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694825/ https://www.ncbi.nlm.nih.gov/pubmed/29187817 http://dx.doi.org/10.3389/fnhum.2017.00555 |
Ejemplares similares
-
Disrupted brain network functional dynamics and hyper‐correlation of structural and functional connectome topology in patients with breast cancer prior to treatment
por: Kesler, Shelli R., et al.
Publicado: (2017) -
Cross-Sectional Characterization of Local Brain Network Connectivity Pre and Post Breast Cancer Treatment and Distinct Association With Subjective Cognitive and Psychological Function
por: Kesler, Shelli R., et al.
Publicado: (2021) -
Neuroimaging based biotypes for precision diagnosis and prognosis in cancer-related cognitive impairment
por: Kesler, Shelli R., et al.
Publicado: (2023) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI
por: Chen, J. Jean, et al.
Publicado: (2021)