Cargando…
A clinical prediction model to identify patients at high risk of hemodynamic instability in the pediatric intensive care unit
BACKGROUND: Early recognition and timely intervention are critical steps for the successful management of shock. The objective of this study was to develop a model to predict requirement for hemodynamic intervention in the pediatric intensive care unit (PICU); thus, clinicians can direct their care...
Autores principales: | Potes, Cristhian, Conroy, Bryan, Xu-Wilson, Minnan, Newth, Christopher, Inwald, David, Frassica, Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694915/ https://www.ncbi.nlm.nih.gov/pubmed/29151364 http://dx.doi.org/10.1186/s13054-017-1874-z |
Ejemplares similares
-
Early prediction of hemodynamic interventions in the intensive care unit using machine learning
por: Rahman, Asif, et al.
Publicado: (2021) -
Prevalence and Temporal Distribution of Extrasystoles in Septic ICU Patients: The Feasibility of Predicting Fluid Responsiveness Using Extrasystoles
por: Enevoldsen, Johannes, et al.
Publicado: (2018) -
Continuous noninvasive blood gas estimation in critically ill pediatric patients with respiratory failure
por: Dong, Junzi, et al.
Publicado: (2022) -
Predicting Body Height in a Pediatric Intensive Care Unit Using Ulnar Length
por: Rasouli, Melody A., et al.
Publicado: (2018) -
External validation of a machine learning model to predict hemodynamic instability in intensive care unit
por: Dung-Hung, Chiang, et al.
Publicado: (2022)