Cargando…
Breaking the bad: Bacillus blocks fungal virulence factors
Fungal pathogens rely on the production of specific virulence factors during infection. Inhibiting such factors generally results in reduced fungal pathogenicity. Most studies in the past have focused on understanding the molecular mechanisms of fungal virulence factor expression during mono-culture...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shared Science Publishers OG
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695856/ https://www.ncbi.nlm.nih.gov/pubmed/29167801 http://dx.doi.org/10.15698/mic2017.11.599 |
_version_ | 1783280373282635776 |
---|---|
author | Mayer, François L. Kronstad, James W. |
author_facet | Mayer, François L. Kronstad, James W. |
author_sort | Mayer, François L. |
collection | PubMed |
description | Fungal pathogens rely on the production of specific virulence factors during infection. Inhibiting such factors generally results in reduced fungal pathogenicity. Most studies in the past have focused on understanding the molecular mechanisms of fungal virulence factor expression during mono-culture, or during interaction with the host. However, a potentially important, second type of interaction has been less well studied thus far - the interplay of fungal pathogens of humans with other microbes found in their natural habitat. Specifically, whether environmental bacteria may impact fungal virulence factor production is largely unknown. In our recent work, we have identified the soil bacterium, Bacillus safensis, as a potent inhibitor of virulence factor production by two major fungal pathogens of humans, Cryptococcus neoformans, and Candida albicans. We determined that the anti-virulence factor mechanism is, at least in part, based on production of bacterial chitinases that target and destabilize the fungal cell surface. These findings describe a cross-kingdom interaction between an environmental bacterium and pathogenic fungi, and highlight the fungal cell wall as an attractive antifungal drug target. |
format | Online Article Text |
id | pubmed-5695856 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Shared Science Publishers OG |
record_format | MEDLINE/PubMed |
spelling | pubmed-56958562017-11-22 Breaking the bad: Bacillus blocks fungal virulence factors Mayer, François L. Kronstad, James W. Microb Cell Microbiology Fungal pathogens rely on the production of specific virulence factors during infection. Inhibiting such factors generally results in reduced fungal pathogenicity. Most studies in the past have focused on understanding the molecular mechanisms of fungal virulence factor expression during mono-culture, or during interaction with the host. However, a potentially important, second type of interaction has been less well studied thus far - the interplay of fungal pathogens of humans with other microbes found in their natural habitat. Specifically, whether environmental bacteria may impact fungal virulence factor production is largely unknown. In our recent work, we have identified the soil bacterium, Bacillus safensis, as a potent inhibitor of virulence factor production by two major fungal pathogens of humans, Cryptococcus neoformans, and Candida albicans. We determined that the anti-virulence factor mechanism is, at least in part, based on production of bacterial chitinases that target and destabilize the fungal cell surface. These findings describe a cross-kingdom interaction between an environmental bacterium and pathogenic fungi, and highlight the fungal cell wall as an attractive antifungal drug target. Shared Science Publishers OG 2017-10-30 /pmc/articles/PMC5695856/ /pubmed/29167801 http://dx.doi.org/10.15698/mic2017.11.599 Text en https://creativecommons.org/licenses/by/4.0/ This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged. |
spellingShingle | Microbiology Mayer, François L. Kronstad, James W. Breaking the bad: Bacillus blocks fungal virulence factors |
title | Breaking the bad: Bacillus blocks fungal virulence factors |
title_full | Breaking the bad: Bacillus blocks fungal virulence factors |
title_fullStr | Breaking the bad: Bacillus blocks fungal virulence factors |
title_full_unstemmed | Breaking the bad: Bacillus blocks fungal virulence factors |
title_short | Breaking the bad: Bacillus blocks fungal virulence factors |
title_sort | breaking the bad: bacillus blocks fungal virulence factors |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695856/ https://www.ncbi.nlm.nih.gov/pubmed/29167801 http://dx.doi.org/10.15698/mic2017.11.599 |
work_keys_str_mv | AT mayerfrancoisl breakingthebadbacillusblocksfungalvirulencefactors AT kronstadjamesw breakingthebadbacillusblocksfungalvirulencefactors |