Cargando…

Multimode fibre based imaging for optically cleared samples

Optical clearing is emerging as a popular approach particularly for studies in neuroscience. However the use of corrosive clearing solutions typically requires sophisticated objectives or extreme care with optical components chosen for single- or multi-photon imaging. In contrast to the use of compl...

Descripción completa

Detalles Bibliográficos
Autores principales: Gusachenko, Ivan, Nylk, Jonathan, Tello, Javier A., Dholakia, Kishan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695962/
https://www.ncbi.nlm.nih.gov/pubmed/29188112
http://dx.doi.org/10.1364/BOE.8.005179
Descripción
Sumario:Optical clearing is emerging as a popular approach particularly for studies in neuroscience. However the use of corrosive clearing solutions typically requires sophisticated objectives or extreme care with optical components chosen for single- or multi-photon imaging. In contrast to the use of complex, custom-made microscope objectives, we show that the use of a corrected multimode fibre (MMF) offers a route that is resistant to corrosion, can be used in clearing media, is not constrained by the refractive index of the immersion medium and offers flexible working distances. Using a corrected MMF, we demonstrate fluorescence imaging of beads and stained neuroblastoma cells through optically cleared mouse brain tissue, as well as imaging in an extreme oxidative environment to show the versatility of our approach. Additionally, we perform Raman imaging of polystyrene beads in clearing media to demonstrate that this approach may be used for vibrational spectroscopy of optically cleared samples.