Cargando…
Administration of alpha-ketoglutarate improves epithelial restitution under stress injury in early-weaning piglets
Alpha-ketoglutarate (AKG) is an important cellular metabolite that participates in energy production and amino acid metabolism. However, the protective effects and mechanism of AKG on mucosal lesions have not been well understood. This study was conducted to investigate the effects of dietary AKG su...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696156/ https://www.ncbi.nlm.nih.gov/pubmed/29190890 http://dx.doi.org/10.18632/oncotarget.20555 |
Sumario: | Alpha-ketoglutarate (AKG) is an important cellular metabolite that participates in energy production and amino acid metabolism. However, the protective effects and mechanism of AKG on mucosal lesions have not been well understood. This study was conducted to investigate the effects of dietary AKG supplementation on epithelial restitution in early-weaning piglets under Escherichia coli lipopolysaccharide (LPS) induction. A total of 32 weaned piglets were used in a 2 × 2 factorial design; the major factors were dietary treatment (basal diet or AKG diet) and inflammatory challenge (LPS or saline). The results showed that AKG supplementation improved the growth performance and intestinal morphology in the LPS-induced early-weaning piglets. Compared with the basal diet, the AKG diet remarkably decreased the concentration and mRNA expression of intestinal inflammatory cytokines (IL-1β, IL-6, and IL-12) in the LPS-induced piglets. Moreover, AKG administration upregulated the mRNA expression of nutrient-sensing transporters (GLUT-2, SGLT-1, PEPT-1, I-FABP2) in the small intestine of both saline- and LPS-treated piglets, and improved the distribution and expression of tight-junction genes andproteins (ZO-1, Occludin, Claudins, E-cadherin). Collectively, our findings indicate that AKG has the potential to alleviate intestinal inflammatory response and improve epithelial restitution and nutrient-sensing ability under stress injury in early-weaning piglets, and it also provides an experimental basis for enteral use of AKG in swine production and clinical application to prevent intestinal epithelial damage. |
---|