Cargando…

Early antagonism of cerebral high mobility group box-1 protein is benefit for sepsis induced brain injury

Sepsis induced brain injury acts as an acute complication and accounts for deterioration and high mortality rate of septic condition. HMGB1 is a late inflammatory mediator that plays a critical role in brain dysfunction and diseases. However, the role of HMGB1 in sepsis induced brain dysfunction rem...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Chao, Tong, Ya-Lin, Li, Jun-Cong, Dong, Ning, Hao, Ji-Wei, Zhang, Qing-Hong, Yao, Yong-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696205/
https://www.ncbi.nlm.nih.gov/pubmed/29190939
http://dx.doi.org/10.18632/oncotarget.21502
Descripción
Sumario:Sepsis induced brain injury acts as an acute complication and accounts for deterioration and high mortality rate of septic condition. HMGB1 is a late inflammatory mediator that plays a critical role in brain dysfunction and diseases. However, the role of HMGB1 in sepsis induced brain dysfunction remains intricate. The current study investigated the effect of HMGB1 on brain injury in septic mice model with intracerebroventricular injection of BoxA (a specific antagonist of HMGB1). The expression of HMGB1, morphological changes of brain tissues, apoptosis of brain cells, and alteration of behavior were determined. The expressions of HMGB1 in cortex, hippocampus, and striatum were significantly enhanced in the sepsis group when compared with the sham group. In septic conditions, brain tissues showed significant abnormalities in tissue structure, and increased apoptosis of brain cells which was caspase-3 dependent. Septic mice showed suppression of locomotor activity and impairment of memory and learning. Neutralizing brain HMGB1 significantly improved brain injury and apoptosis of brain cells, and further ameliorated disturbed locomotor activities and damaged memory and learning. However, no significant improvement of survival rate was seen after inhibiting central HMGB1. These results reveal that HMGB1 is a potential target for ameliorating sepsis induced brain injury with early antagonizing.