Cargando…
Lower bounds for the low-rank matrix approximation
Low-rank matrix recovery is an active topic drawing the attention of many researchers. It addresses the problem of approximating the observed data matrix by an unknown low-rank matrix. Suppose that A is a low-rank matrix approximation of D, where D and A are [Formula: see text] matrices. Based on a...
Autores principales: | Li, Jicheng, Liu, Zisheng, Li, Guo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696467/ https://www.ncbi.nlm.nih.gov/pubmed/29200797 http://dx.doi.org/10.1186/s13660-017-1564-z |
Ejemplares similares
-
Low rank matrix approximation using the Lanczos bi-diagonalization process
por: Simon, H D, et al.
Publicado: (1997) -
A new method based on the manifold-alternative approximating for low-rank matrix completion
por: Ren, Fujiao, et al.
Publicado: (2018) -
Robust Generalized Low Rank Approximations of Matrices
por: Shi, Jiarong, et al.
Publicado: (2015) -
Low Rank Approximation: Algorithms, Implementation, Applications
por: Markovsky, Ivan
Publicado: (2012) -
Approximating Vector Scheduling: Almost Matching Upper and Lower Bounds
por: Bansal, Nikhil, et al.
Publicado: (2016)