Cargando…

Biomarker monitoring of controlled dietary acrylamide exposure indicates consistent human endogenous background

The aim of the present study was to explore the relation of controlled dietary acrylamide (AA) intake with the excretion of AA-related urinary mercapturic acids (MA), N-acetyl-S-(carbamoylethyl)-l-cysteine (AAMA) and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA). Excretion kinetics of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Goempel, Katharina, Tedsen, Laura, Ruenz, Meike, Bakuradze, Tamara, Schipp, Dorothea, Galan, Jens, Eisenbrand, Gerhard, Richling, Elke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696489/
https://www.ncbi.nlm.nih.gov/pubmed/28534225
http://dx.doi.org/10.1007/s00204-017-1990-1
Descripción
Sumario:The aim of the present study was to explore the relation of controlled dietary acrylamide (AA) intake with the excretion of AA-related urinary mercapturic acids (MA), N-acetyl-S-(carbamoylethyl)-l-cysteine (AAMA) and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA). Excretion kinetics of these short-term exposure biomarkers were monitored under strictly controlled conditions within a duplicate diet human intervention study. One study arm (group A, n = 6) ingested AA via coffee (0.15–0.17 µg/kg bw) on day 6 and in a meal containing an upper exposure level of AA (14.1–15.9 μg/kg bw) on day 10. The other arm (group B) was on AA minimized diet (washout, 0.05–0.06 µg/kg bw) throughout the whole 13-day study period. On day 6, these volunteers ingested (13)C(3)D(3)-AA (1 μg/kg bw). In both arms, urinary MA excretion was continuously monitored and blood samples were taken to determine hemoglobin adducts. Ingestion of four cups of coffee resulted in a slightly enhanced short-term biomarker response within the background range of group B. At the end of the 13-day washout period, group B excreted an AAMA baseline level of 0.14 ± 0.10 µmol/d although AA intake was only about 0.06 µmol/d. This sustained over-proportional AAMA background suggested an endogenous AA baseline exposure level of 0.3–0.4 µg/kg bw/d. The excretion of (13)C(3)D(3)-AA was practically complete within 72–96 h which rules out delayed release of AA (or any other MA precursor) from deep body compartments. The results provide compelling support for the hypothesis of a sustained endogenous AA formation in the human body.