Cargando…
Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes
BACKGROUND: Automated disease code classification using free-text medical information is important for public health surveillance. However, traditional natural language processing (NLP) pipelines are limited, so we propose a method combining word embedding with a convolutional neural network (CNN)....
Autores principales: | Lin, Chin, Hsu, Chia-Jung, Lou, Yu-Sheng, Yeh, Shih-Jen, Lee, Chia-Cheng, Su, Sui-Lung, Chen, Hsiang-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696581/ https://www.ncbi.nlm.nih.gov/pubmed/29109070 http://dx.doi.org/10.2196/jmir.8344 |
Ejemplares similares
-
Projection Word Embedding Model With Hybrid Sampling Training for Classifying ICD-10-CM Codes: Longitudinal Observational Study
por: Lin, Chin, et al.
Publicado: (2019) -
Deep Learning Artificial Intelligence to Predict the Need for Tracheostomy in Patients of Deep Neck Infection Based on Clinical and Computed Tomography Findings—Preliminary Data and a Pilot Study
por: Chen, Shih-Lung, et al.
Publicado: (2022) -
Classifying patents based on their semantic content
por: Bergeaud, Antonin, et al.
Publicado: (2017) -
Artificial Intelligence–Based Prediction of Lung Cancer Risk Using Nonimaging Electronic Medical Records: Deep Learning Approach
por: Yeh, Marvin Chia-Han, et al.
Publicado: (2021) -
Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis
por: Chen, Hung-Yi, et al.
Publicado: (2022)