Cargando…
Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping
BACKGROUND: Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dy...
Autores principales: | Sadeghi-Tehran, Pouria, Virlet, Nicolas, Sabermanesh, Kasra, Hawkesford, Malcolm J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696775/ https://www.ncbi.nlm.nih.gov/pubmed/29201134 http://dx.doi.org/10.1186/s13007-017-0253-8 |
Ejemplares similares
-
Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2017) -
Machine Learning Methods for Automatic Segmentation of Images of Field- and Glasshouse-Based Plants for High-Throughput Phenotyping
por: Okyere, Frank Gyan, et al.
Publicado: (2023) -
DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
Scalable Database Indexing and Fast Image Retrieval Based on Deep Learning and Hierarchically Nested Structure Applied to Remote Sensing and Plant Biology
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform
por: Lyra, Danilo H, et al.
Publicado: (2020)