Cargando…

Development and Qualification of Physiologically Based Pharmacokinetic Models for Drugs With Atypical Distribution Behavior: A Desipramine Case Study

Desipramine is a secondary tricyclic amine, which is primarily metabolized by cytochrome 2D6. It shows a high volume of distribution (Vss) (10–50 L/kg) due to its high lipophilicity, unspecific phospholipid binding, and lysosomal trapping. The objective of this study was to develop and qualify a phy...

Descripción completa

Detalles Bibliográficos
Autores principales: Samant, TS, Lukacova, V, Schmidt, S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697013/
https://www.ncbi.nlm.nih.gov/pubmed/28398693
http://dx.doi.org/10.1002/psp4.12180
Descripción
Sumario:Desipramine is a secondary tricyclic amine, which is primarily metabolized by cytochrome 2D6. It shows a high volume of distribution (Vss) (10–50 L/kg) due to its high lipophilicity, unspecific phospholipid binding, and lysosomal trapping. The objective of this study was to develop and qualify a physiologically based pharmacokinetic (PBPK) model for desipramine, which accounts for the high Vss of the drug following intravenous and oral administration of doses up to 100 mg. The model also accounts for the extended time to reach maximum concentration after oral dosing due to enterocyte trapping. Once developed and qualified in adults, we characterized the dynamic changes in metabolism and pharmacokinetics of desipramine after birth by scaling the system‐specific parameters of the model from adults to pediatrics. The developed modeling strategy provides a prototypical workflow that can also be applied to other drugs with similar properties and a high volume of distribution.