Cargando…

Sodium Mercaptoethane Sulfonate Reduces Collagenolytic Degradation and Synergistically Enhances Antimicrobial Durability in an Antibiotic-Loaded Biopolymer Film for Prevention of Surgical-Site Infections

Implant-associated surgical-site infections can have significant clinical consequences. Previously we reported a method for prophylactically disinfecting implant surfaces in surgical pockets, where an antibiotic solution containing minocycline (M) and rifampin (R) was applied as a solid film in a cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosenblatt, Joel, Reitzel, Ruth A., Viola, George M., Vargas-Cruz, Nylev, Selber, Jesse, Raad, Issam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697372/
https://www.ncbi.nlm.nih.gov/pubmed/29238713
http://dx.doi.org/10.1155/2017/3149536
Descripción
Sumario:Implant-associated surgical-site infections can have significant clinical consequences. Previously we reported a method for prophylactically disinfecting implant surfaces in surgical pockets, where an antibiotic solution containing minocycline (M) and rifampin (R) was applied as a solid film in a crosslinked biopolymer matrix that partially liquefied in situ to provide extended prophylaxis. Here we studied the effect of adding sodium 2-mercaptoethane sulfonate (MeSNA) on durability of prophylaxis in an in vitro model of implant-associated surgical-site infection. Adding MeSNA to the M/R biopolymer, antimicrobial film extended the duration for which biofilm formation by multidrug-resistant Pseudomonas aeruginosa (MDR-PA) was prevented on silicone surfaces in the model. M/R films with and without MeSNA were effective in preventing colonization by methicillin-resistant Staphylococcus aureus. Independent experiments revealed that MeSNA directly inhibited proteolytic digestion of the biopolymer film and synergistically enhanced antimicrobial potency of M/R against MDR-PA. Incubation of the MeSNA containing films with L929 fibroblasts revealed no impairment of cellular metabolic activity or viability.