Cargando…
Cortical mapping of painful electrical stimulation by quantitative electroencephalography: unraveling the time–frequency–channel domain
The goal of this study was to capture the electroencephalographic signature of experimentally induced pain and pain-modulating mechanisms after painful peripheral electrical stimulation to determine one or a selected group of electrodes at a specific time point with a specific frequency range. In th...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697445/ https://www.ncbi.nlm.nih.gov/pubmed/29180894 http://dx.doi.org/10.2147/JPR.S145783 |
Sumario: | The goal of this study was to capture the electroencephalographic signature of experimentally induced pain and pain-modulating mechanisms after painful peripheral electrical stimulation to determine one or a selected group of electrodes at a specific time point with a specific frequency range. In the first experiment, ten healthy participants were exposed to stimulation of the right median nerve while registering brain activity using 32-channel electroencephalography. Electrical stimulations were organized in four blocks of 20 stimuli with four intensities – 100%, 120%, 140%, and 160% – of the electrical pain threshold. In the second experiment, 15 healthy participants received electrical stimulation on the dominant median nerve before and during the application of a second painful stimulus. Raw data were converted into the time–frequency domain by applying a continuous wavelet transform. Separated domain information was extracted by calculating Parafac models. The results demonstrated that it is possible to capture a reproducible cortical neural response after painful electrical stimulation, more specifically at 250 milliseconds poststimulus, at the midline electrodes Cz and FCz with predominant δ-oscillations. The signature of the top-down nociceptive inhibitory mechanisms is δ-activity at 235 ms poststimulus at the prefrontal electrodes. This study presents a methodology to overcome the a priori determination of the regions of interest to analyze the brain response after painful electrical stimulation. |
---|