Cargando…
A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation
Microsporidia are obligate intracellular parasites, existing in a wide variety of animal hosts. Here, we reported Aloc SWP2, a novel protein identified from the spore wall of Antonospora locustae (formerly, Nosema locustae, and synonym, Paranosema locustae), containing four cysteines that are conser...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697631/ https://www.ncbi.nlm.nih.gov/pubmed/28277606 http://dx.doi.org/10.1111/jeu.12410 |
_version_ | 1783280653149667328 |
---|---|
author | Chen, Longxin Li, Runting You, Yinwei Zhang, Kun Zhang, Long |
author_facet | Chen, Longxin Li, Runting You, Yinwei Zhang, Kun Zhang, Long |
author_sort | Chen, Longxin |
collection | PubMed |
description | Microsporidia are obligate intracellular parasites, existing in a wide variety of animal hosts. Here, we reported Aloc SWP2, a novel protein identified from the spore wall of Antonospora locustae (formerly, Nosema locustae, and synonym, Paranosema locustae), containing four cysteines that are conserved among the homologues of several Microspodian pathogens in insects and mammals. Aloc SWP2 was detected in the wall of mature spores via indirect immunofluorescence assay. In addition, immunocytochemistry localization experiments showed that the protein was observed in the wall of sporoblasts, sporonts, and meronts during sporulation within the host body, also in the wall of mature spores. AlocSWP2 was not detected in the fat body of infected locust until the 9th day after inoculating spores via RT‐PCR experiments. Furthermore, the survival percentage of infected locusts injected with dsRNA of AlocSWP2 on the 15th, 16th, and 17th days after inoculation with microsporidian were significantly higher than those of infected locusts without dsRNA treatment. Conversely, the amount of spores in locusts infected with A. locustae after treated with RNAi AlocSWP2 was significantly lower than those of infected locusts without RNAi of this gene. This novel spore wall protein from A. locustae may be involved in sporulation, thus contributing to host mortality. |
format | Online Article Text |
id | pubmed-5697631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56976312017-11-28 A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation Chen, Longxin Li, Runting You, Yinwei Zhang, Kun Zhang, Long J Eukaryot Microbiol Original Articles Microsporidia are obligate intracellular parasites, existing in a wide variety of animal hosts. Here, we reported Aloc SWP2, a novel protein identified from the spore wall of Antonospora locustae (formerly, Nosema locustae, and synonym, Paranosema locustae), containing four cysteines that are conserved among the homologues of several Microspodian pathogens in insects and mammals. Aloc SWP2 was detected in the wall of mature spores via indirect immunofluorescence assay. In addition, immunocytochemistry localization experiments showed that the protein was observed in the wall of sporoblasts, sporonts, and meronts during sporulation within the host body, also in the wall of mature spores. AlocSWP2 was not detected in the fat body of infected locust until the 9th day after inoculating spores via RT‐PCR experiments. Furthermore, the survival percentage of infected locusts injected with dsRNA of AlocSWP2 on the 15th, 16th, and 17th days after inoculation with microsporidian were significantly higher than those of infected locusts without dsRNA treatment. Conversely, the amount of spores in locusts infected with A. locustae after treated with RNAi AlocSWP2 was significantly lower than those of infected locusts without RNAi of this gene. This novel spore wall protein from A. locustae may be involved in sporulation, thus contributing to host mortality. John Wiley and Sons Inc. 2017-04-10 2017 /pmc/articles/PMC5697631/ /pubmed/28277606 http://dx.doi.org/10.1111/jeu.12410 Text en © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Chen, Longxin Li, Runting You, Yinwei Zhang, Kun Zhang, Long A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation |
title | A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation |
title_full | A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation |
title_fullStr | A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation |
title_full_unstemmed | A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation |
title_short | A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation |
title_sort | novel spore wall protein from antonospora locustae (microsporidia: nosematidae) contributes to sporulation |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697631/ https://www.ncbi.nlm.nih.gov/pubmed/28277606 http://dx.doi.org/10.1111/jeu.12410 |
work_keys_str_mv | AT chenlongxin anovelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT lirunting anovelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT youyinwei anovelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT zhangkun anovelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT zhanglong anovelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT chenlongxin novelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT lirunting novelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT youyinwei novelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT zhangkun novelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation AT zhanglong novelsporewallproteinfromantonosporalocustaemicrosporidianosematidaecontributestosporulation |