Cargando…

On the Use of Mixed Markov Models for Intensive Longitudinal Data

Markov modeling presents an attractive analytical framework for researchers who are interested in state-switching processes occurring within a person, dyad, family, group, or other system over time. Markov modeling is flexible and can be used with various types of data to study observed or latent st...

Descripción completa

Detalles Bibliográficos
Autores principales: de Haan-Rietdijk, S., Kuppens, P., Bergeman, C. S., Sheeber, L. B., Allen, N. B., Hamaker, E. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698102/
https://www.ncbi.nlm.nih.gov/pubmed/28956618
http://dx.doi.org/10.1080/00273171.2017.1370364
_version_ 1783280715183423488
author de Haan-Rietdijk, S.
Kuppens, P.
Bergeman, C. S.
Sheeber, L. B.
Allen, N. B.
Hamaker, E. L.
author_facet de Haan-Rietdijk, S.
Kuppens, P.
Bergeman, C. S.
Sheeber, L. B.
Allen, N. B.
Hamaker, E. L.
author_sort de Haan-Rietdijk, S.
collection PubMed
description Markov modeling presents an attractive analytical framework for researchers who are interested in state-switching processes occurring within a person, dyad, family, group, or other system over time. Markov modeling is flexible and can be used with various types of data to study observed or latent state-switching processes, and can include subject-specific random effects to account for heterogeneity. We focus on the application of mixed Markov models to intensive longitudinal data sets in psychology, which are becoming ever more common and provide a rich description of each subject’s process. We examine how specifications of a Markov model change when continuous random effect distributions are included, and how mixed Markov models can be used in the intensive longitudinal research context. Advantages of Bayesian estimation are discussed and the approach is illustrated by two empirical applications.
format Online
Article
Text
id pubmed-5698102
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-56981022018-11-01 On the Use of Mixed Markov Models for Intensive Longitudinal Data de Haan-Rietdijk, S. Kuppens, P. Bergeman, C. S. Sheeber, L. B. Allen, N. B. Hamaker, E. L. Multivariate Behav Res Article Markov modeling presents an attractive analytical framework for researchers who are interested in state-switching processes occurring within a person, dyad, family, group, or other system over time. Markov modeling is flexible and can be used with various types of data to study observed or latent state-switching processes, and can include subject-specific random effects to account for heterogeneity. We focus on the application of mixed Markov models to intensive longitudinal data sets in psychology, which are becoming ever more common and provide a rich description of each subject’s process. We examine how specifications of a Markov model change when continuous random effect distributions are included, and how mixed Markov models can be used in the intensive longitudinal research context. Advantages of Bayesian estimation are discussed and the approach is illustrated by two empirical applications. 2017-09-28 2017 /pmc/articles/PMC5698102/ /pubmed/28956618 http://dx.doi.org/10.1080/00273171.2017.1370364 Text en This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
spellingShingle Article
de Haan-Rietdijk, S.
Kuppens, P.
Bergeman, C. S.
Sheeber, L. B.
Allen, N. B.
Hamaker, E. L.
On the Use of Mixed Markov Models for Intensive Longitudinal Data
title On the Use of Mixed Markov Models for Intensive Longitudinal Data
title_full On the Use of Mixed Markov Models for Intensive Longitudinal Data
title_fullStr On the Use of Mixed Markov Models for Intensive Longitudinal Data
title_full_unstemmed On the Use of Mixed Markov Models for Intensive Longitudinal Data
title_short On the Use of Mixed Markov Models for Intensive Longitudinal Data
title_sort on the use of mixed markov models for intensive longitudinal data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698102/
https://www.ncbi.nlm.nih.gov/pubmed/28956618
http://dx.doi.org/10.1080/00273171.2017.1370364
work_keys_str_mv AT dehaanrietdijks ontheuseofmixedmarkovmodelsforintensivelongitudinaldata
AT kuppensp ontheuseofmixedmarkovmodelsforintensivelongitudinaldata
AT bergemancs ontheuseofmixedmarkovmodelsforintensivelongitudinaldata
AT sheeberlb ontheuseofmixedmarkovmodelsforintensivelongitudinaldata
AT allennb ontheuseofmixedmarkovmodelsforintensivelongitudinaldata
AT hamakerel ontheuseofmixedmarkovmodelsforintensivelongitudinaldata