Cargando…
On the Use of Mixed Markov Models for Intensive Longitudinal Data
Markov modeling presents an attractive analytical framework for researchers who are interested in state-switching processes occurring within a person, dyad, family, group, or other system over time. Markov modeling is flexible and can be used with various types of data to study observed or latent st...
Autores principales: | de Haan-Rietdijk, S., Kuppens, P., Bergeman, C. S., Sheeber, L. B., Allen, N. B., Hamaker, E. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698102/ https://www.ncbi.nlm.nih.gov/pubmed/28956618 http://dx.doi.org/10.1080/00273171.2017.1370364 |
Ejemplares similares
-
What's in a Day? A Guide to Decomposing the Variance in Intensive Longitudinal Data
por: de Haan-Rietdijk, Silvia, et al.
Publicado: (2016) -
Get Over It! A Multilevel Threshold Autoregressive Model for State-Dependent Affect Regulation
por: De Haan-Rietdijk, Silvia, et al.
Publicado: (2014) -
Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data
por: de Haan-Rietdijk, Silvia, et al.
Publicado: (2017) -
Latent Markov models for longitudinal data
por: Bartolucci, Francesco, et al.
Publicado: (2012) -
Latent Markov Latent Trait Analysis for Exploring Measurement Model
Changes in Intensive Longitudinal Data
por: Vogelsmeier, Leonie V. D. E., et al.
Publicado: (2020)