Cargando…

The formation and evolution of Titan’s winter polar vortex

Saturn’s largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan’s 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter pol...

Descripción completa

Detalles Bibliográficos
Autores principales: Teanby, Nicholas A., Bézard, Bruno, Vinatier, Sandrine, Sylvestre, Melody, Nixon, Conor A., Irwin, Patrick G. J., de Kok, Remco J., Calcutt, Simon B., Flasar, F. Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698511/
https://www.ncbi.nlm.nih.gov/pubmed/29162820
http://dx.doi.org/10.1038/s41467-017-01839-z
_version_ 1783280781425115136
author Teanby, Nicholas A.
Bézard, Bruno
Vinatier, Sandrine
Sylvestre, Melody
Nixon, Conor A.
Irwin, Patrick G. J.
de Kok, Remco J.
Calcutt, Simon B.
Flasar, F. Michael
author_facet Teanby, Nicholas A.
Bézard, Bruno
Vinatier, Sandrine
Sylvestre, Melody
Nixon, Conor A.
Irwin, Patrick G. J.
de Kok, Remco J.
Calcutt, Simon B.
Flasar, F. Michael
author_sort Teanby, Nicholas A.
collection PubMed
description Saturn’s largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan’s 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter polar vortex formation. Throughout 2010–2011, strengthening subsidence produced a mesospheric hot-spot and caused extreme enrichment of photochemically produced trace gases. However, in 2012 unexpected and rapid mesospheric cooling was observed. Here we show extreme trace gas enrichment within the polar vortex dramatically increases mesospheric long-wave radiative cooling efficiency, causing unusually cold temperatures 2–6 years post-equinox. The long time-frame to reach a stable vortex configuration results from the high infrared opacity of Titan’s trace gases and the relatively long atmospheric radiative time constant. Winter polar hot-spots have been observed on other planets, but detection of post-equinox cooling is so far unique to Titan.
format Online
Article
Text
id pubmed-5698511
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56985112017-11-24 The formation and evolution of Titan’s winter polar vortex Teanby, Nicholas A. Bézard, Bruno Vinatier, Sandrine Sylvestre, Melody Nixon, Conor A. Irwin, Patrick G. J. de Kok, Remco J. Calcutt, Simon B. Flasar, F. Michael Nat Commun Article Saturn’s largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan’s 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter polar vortex formation. Throughout 2010–2011, strengthening subsidence produced a mesospheric hot-spot and caused extreme enrichment of photochemically produced trace gases. However, in 2012 unexpected and rapid mesospheric cooling was observed. Here we show extreme trace gas enrichment within the polar vortex dramatically increases mesospheric long-wave radiative cooling efficiency, causing unusually cold temperatures 2–6 years post-equinox. The long time-frame to reach a stable vortex configuration results from the high infrared opacity of Titan’s trace gases and the relatively long atmospheric radiative time constant. Winter polar hot-spots have been observed on other planets, but detection of post-equinox cooling is so far unique to Titan. Nature Publishing Group UK 2017-11-21 /pmc/articles/PMC5698511/ /pubmed/29162820 http://dx.doi.org/10.1038/s41467-017-01839-z Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Teanby, Nicholas A.
Bézard, Bruno
Vinatier, Sandrine
Sylvestre, Melody
Nixon, Conor A.
Irwin, Patrick G. J.
de Kok, Remco J.
Calcutt, Simon B.
Flasar, F. Michael
The formation and evolution of Titan’s winter polar vortex
title The formation and evolution of Titan’s winter polar vortex
title_full The formation and evolution of Titan’s winter polar vortex
title_fullStr The formation and evolution of Titan’s winter polar vortex
title_full_unstemmed The formation and evolution of Titan’s winter polar vortex
title_short The formation and evolution of Titan’s winter polar vortex
title_sort formation and evolution of titan’s winter polar vortex
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698511/
https://www.ncbi.nlm.nih.gov/pubmed/29162820
http://dx.doi.org/10.1038/s41467-017-01839-z
work_keys_str_mv AT teanbynicholasa theformationandevolutionoftitanswinterpolarvortex
AT bezardbruno theformationandevolutionoftitanswinterpolarvortex
AT vinatiersandrine theformationandevolutionoftitanswinterpolarvortex
AT sylvestremelody theformationandevolutionoftitanswinterpolarvortex
AT nixonconora theformationandevolutionoftitanswinterpolarvortex
AT irwinpatrickgj theformationandevolutionoftitanswinterpolarvortex
AT dekokremcoj theformationandevolutionoftitanswinterpolarvortex
AT calcuttsimonb theformationandevolutionoftitanswinterpolarvortex
AT flasarfmichael theformationandevolutionoftitanswinterpolarvortex
AT teanbynicholasa formationandevolutionoftitanswinterpolarvortex
AT bezardbruno formationandevolutionoftitanswinterpolarvortex
AT vinatiersandrine formationandevolutionoftitanswinterpolarvortex
AT sylvestremelody formationandevolutionoftitanswinterpolarvortex
AT nixonconora formationandevolutionoftitanswinterpolarvortex
AT irwinpatrickgj formationandevolutionoftitanswinterpolarvortex
AT dekokremcoj formationandevolutionoftitanswinterpolarvortex
AT calcuttsimonb formationandevolutionoftitanswinterpolarvortex
AT flasarfmichael formationandevolutionoftitanswinterpolarvortex