Cargando…

Three-Dimensional Superresolution Imaging of the FtsZ Ring during Cell Division of the Cyanobacterium Prochlorococcus

Superresolution imaging has revealed subcellular structures and protein interactions in many organisms. However, superresolution microscopy with lateral resolution better than 100 nm has not been achieved in photosynthetic cells due to the interference of a high-autofluorescence background. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Riyue, Liu, Yaxin, Liu, Shichang, Wang, Ying, Li, Kim, Li, Ning, Xu, Daiying, Zeng, Qinglu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698547/
https://www.ncbi.nlm.nih.gov/pubmed/29162705
http://dx.doi.org/10.1128/mBio.00657-17
Descripción
Sumario:Superresolution imaging has revealed subcellular structures and protein interactions in many organisms. However, superresolution microscopy with lateral resolution better than 100 nm has not been achieved in photosynthetic cells due to the interference of a high-autofluorescence background. Here, we developed a photobleaching method to effectively reduce the autofluorescence of cyanobacterial and plant cells. We achieved lateral resolution of ~10 nm with stochastic optical reconstruction microscopy (STORM) in the sphere-shaped cyanobacterium Prochlorococcus and the flowering plant Arabidopsis thaliana. During the cell cycle of Prochlorococcus, we characterized the three-dimensional (3D) organization of the cell division protein FtsZ, which forms a ring structure at the division site and is important for cytokinesis of bacteria and chloroplasts. Although the FtsZ ring assembly process in rod-shaped bacteria has been studied extensively, it has rarely been studied in sphere-shaped bacteria. Similarly to rod-shaped bacteria, our results with Prochlorococcus also showed the assembly of FtsZ clusters into incomplete rings and then complete rings during cell division. Differently from rod-shaped bacteria, the FtsZ ring diameter was not found to decrease during Prochlorococcus cell division. We also discovered a novel double-Z-ring structure, which may be the Z rings of two daughter cells in a predivisional mother cell. Our results showed a quantitative picture of the in vivo Z ring organization of sphere-shaped bacteria.