Cargando…
Convolutional Neural Networks with 3D Input for P300 Identification in Auditory Brain-Computer Interfaces
From allowing basic communication to move through an environment, several attempts are being made in the field of brain-computer interfaces (BCI) to assist people that somehow find it difficult or impossible to perform certain activities. Focusing on these people as potential users of BCI, we obtain...
Autores principales: | Carabez, Eduardo, Sugi, Miho, Nambu, Isao, Wada, Yasuhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698603/ https://www.ncbi.nlm.nih.gov/pubmed/29250108 http://dx.doi.org/10.1155/2017/8163949 |
Ejemplares similares
-
Improving the Performance of an Auditory Brain-Computer Interface Using Virtual Sound Sources by Shortening Stimulus Onset Asynchrony
por: Sugi, Miho, et al.
Publicado: (2018) -
Estimating the Intended Sound Direction of the User: Toward an Auditory Brain-Computer Interface Using Out-of-Head Sound Localization
por: Nambu, Isao, et al.
Publicado: (2013) -
Affective Stimuli for an Auditory P300 Brain-Computer Interface
por: Onishi, Akinari, et al.
Publicado: (2017) -
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
por: Halder, Sebastian, et al.
Publicado: (2013) -
3D Input Convolutional Neural Network for SSVEP Classification in Design of Brain Computer Interface for Patient User
por: Oralhan, Zeki, et al.
Publicado: (2022)