Cargando…

Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach

Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐H...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Kewei, Yang, Li‐Ming, Wang, Xi, Guo, Liping, Cheng, Guang, Zhang, Chun, Jin, Shangbin, Tan, Bien, Cooper, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698698/
https://www.ncbi.nlm.nih.gov/pubmed/28926688
http://dx.doi.org/10.1002/anie.201708548
_version_ 1783280807309213696
author Wang, Kewei
Yang, Li‐Ming
Wang, Xi
Guo, Liping
Cheng, Guang
Zhang, Chun
Jin, Shangbin
Tan, Bien
Cooper, Andrew
author_facet Wang, Kewei
Yang, Li‐Ming
Wang, Xi
Guo, Liping
Cheng, Guang
Zhang, Chun
Jin, Shangbin
Tan, Bien
Cooper, Andrew
author_sort Wang, Kewei
collection PubMed
description Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h(−1) g(−1) under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g(−1).
format Online
Article
Text
id pubmed-5698698
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-56986982017-11-28 Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach Wang, Kewei Yang, Li‐Ming Wang, Xi Guo, Liping Cheng, Guang Zhang, Chun Jin, Shangbin Tan, Bien Cooper, Andrew Angew Chem Int Ed Engl Communications Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h(−1) g(−1) under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g(−1). John Wiley and Sons Inc. 2017-10-09 2017-11-06 /pmc/articles/PMC5698698/ /pubmed/28926688 http://dx.doi.org/10.1002/anie.201708548 Text en © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Wang, Kewei
Yang, Li‐Ming
Wang, Xi
Guo, Liping
Cheng, Guang
Zhang, Chun
Jin, Shangbin
Tan, Bien
Cooper, Andrew
Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach
title Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach
title_full Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach
title_fullStr Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach
title_full_unstemmed Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach
title_short Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach
title_sort covalent triazine frameworks via a low‐temperature polycondensation approach
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698698/
https://www.ncbi.nlm.nih.gov/pubmed/28926688
http://dx.doi.org/10.1002/anie.201708548
work_keys_str_mv AT wangkewei covalenttriazineframeworksviaalowtemperaturepolycondensationapproach
AT yangliming covalenttriazineframeworksviaalowtemperaturepolycondensationapproach
AT wangxi covalenttriazineframeworksviaalowtemperaturepolycondensationapproach
AT guoliping covalenttriazineframeworksviaalowtemperaturepolycondensationapproach
AT chengguang covalenttriazineframeworksviaalowtemperaturepolycondensationapproach
AT zhangchun covalenttriazineframeworksviaalowtemperaturepolycondensationapproach
AT jinshangbin covalenttriazineframeworksviaalowtemperaturepolycondensationapproach
AT tanbien covalenttriazineframeworksviaalowtemperaturepolycondensationapproach
AT cooperandrew covalenttriazineframeworksviaalowtemperaturepolycondensationapproach