Cargando…

Synthesis and Utilization of Nitroalkyne Equivalents in Batch and Continuous Flow

We report a method for overcoming the low stability of nitroalkynes through the development of nitrated vinyl silyltriflate equivalents. Because of their instability, nitroalkynes have only rarely been utilized in synthesis. The reactivity of these silyltriflates, which are prepared in situ, is exem...

Descripción completa

Detalles Bibliográficos
Autores principales: Morse, Peter D., Jamison, Timothy F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698803/
https://www.ncbi.nlm.nih.gov/pubmed/28929565
http://dx.doi.org/10.1002/anie.201706157
Descripción
Sumario:We report a method for overcoming the low stability of nitroalkynes through the development of nitrated vinyl silyltriflate equivalents. Because of their instability, nitroalkynes have only rarely been utilized in synthesis. The reactivity of these silyltriflates, which are prepared in situ, is exemplified by dipolar cycloaddition reactions with nitrones to give highly substituted 4‐nitro‐4‐isoxazolines in high yields. This approach has proven general for several different alkyl and aryl substituted alkynes. In order to minimize the accumulation of potentially hazardous reaction intermediates, we have also developed a continuous flow variant of this method that is capable of carrying out the entire reaction sequence in a good yield and a short residence time.