Cargando…

High‐Performance Liquid Chromatography Method for Rich Pharmacokinetic Sampling Schemes in Translational Rat Toxicity Models With Vancomycin

A translational need exists to understand and predict vancomycin‐induced kidney toxicity. We describe: (i) a vancomycin high‐performance liquid chromatography (HPLC) method for rat plasma and kidney tissue homogenate; (ii) a rat pharmacokinetic (PK) study to demonstrate utility; and (iii) a catheter...

Descripción completa

Detalles Bibliográficos
Autores principales: Joshi, MD, O'Donnell, JN, Venkatesan, N, Chang, J, Nguyen, H, Rhodes, NJ, Pais, G, Chapman, RL, Griffin, B, Scheetz, MH
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698807/
https://www.ncbi.nlm.nih.gov/pubmed/28675684
http://dx.doi.org/10.1111/cts.12484
Descripción
Sumario:A translational need exists to understand and predict vancomycin‐induced kidney toxicity. We describe: (i) a vancomycin high‐performance liquid chromatography (HPLC) method for rat plasma and kidney tissue homogenate; (ii) a rat pharmacokinetic (PK) study to demonstrate utility; and (iii) a catheter retention study to enable future preclinical studies. Rat plasma and pup kidney tissue homogenate were analyzed via HPLC for vancomycin concentrations ranging from 3–75 and 15.1–75.5 μg/mL, respectively, using a Kinetex Biphenyl column and gradient elution of water with 0.1% formic acid: acetonitrile (70:30 v/v). Sprague‐Dawley rats (n = 10) receiving 150 mg/kg of vancomycin intraperitoneally had plasma sampled for PK. Finally, a catheter retention study was performed on polyurethane catheters to assess adsorption. Precision was <6.1% for all intra‐assay and interassay HPLC measurements, with >96.3% analyte recovery. A two‐compartment model fit the data well, facilitating PK exposure estimates. Finally, vancomycin was heterogeneously retained by polyurethane catheters.