Cargando…

Gene Prediction in Metagenomic Fragments with Deep Learning

Next generation sequencing technologies used in metagenomics yield numerous sequencing fragments which come from thousands of different species. Accurately identifying genes from metagenomics fragments is one of the most fundamental issues in metagenomics. In this article, by fusing multifeatures (i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shao-Wu, Jin, Xiang-Yang, Zhang, Teng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698827/
https://www.ncbi.nlm.nih.gov/pubmed/29250541
http://dx.doi.org/10.1155/2017/4740354
Descripción
Sumario:Next generation sequencing technologies used in metagenomics yield numerous sequencing fragments which come from thousands of different species. Accurately identifying genes from metagenomics fragments is one of the most fundamental issues in metagenomics. In this article, by fusing multifeatures (i.e., monocodon usage, monoamino acid usage, ORF length coverage, and Z-curve features) and using deep stacking networks learning model, we present a novel method (called Meta-MFDL) to predict the metagenomic genes. The results with 10 CV and independent tests show that Meta-MFDL is a powerful tool for identifying genes from metagenomic fragments.