Cargando…

A village level cluster-randomized entomological evaluation of combination long-lasting insecticidal nets containing pyrethroid plus PBO synergist in Southern Mali

BACKGROUND: There is growing concern that malaria vector resistance to pyrethroid insecticides may reduce the effectiveness of long-lasting insecticidal nets (LLINs). Combination LLINs are designed to control susceptible and pyrethroid-resistant mosquito populations through a mixture of pyrethroid w...

Descripción completa

Detalles Bibliográficos
Autores principales: Cisse, Moussa B. M., Sangare, Djibril, Oxborough, Richard M., Dicko, Abdourhamane, Dengela, Dereje, Sadou, Aboubacar, Mihigo, Jules, George, Kristen, Norris, Laura, Fornadel, Christen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698970/
https://www.ncbi.nlm.nih.gov/pubmed/29162120
http://dx.doi.org/10.1186/s12936-017-2124-1
Descripción
Sumario:BACKGROUND: There is growing concern that malaria vector resistance to pyrethroid insecticides may reduce the effectiveness of long-lasting insecticidal nets (LLINs). Combination LLINs are designed to control susceptible and pyrethroid-resistant mosquito populations through a mixture of pyrethroid with piperonyl butoxide (PBO) synergist. A cluster randomized trial with entomology outcome measures was conducted in Mali to determine the added benefit over mono-treated pyrethroid predecessors. Four LLIN treatments; permethrin + PBO, permethrin, deltamethrin + PBO, and deltamethrin, were randomly allocated to four villages each (16 villages total) and distributed to cover every sleeping place. Entomological monitoring of indoor Anopheles resting densities, host preference, vector longevity, and sporozoite rates were monitored every 2 months over 2 years in 2014 and 2015. RESULTS: Bottle bioassays confirmed permethrin and deltamethrin resistance in Anopheles gambiae sensu lato (s.l.), (the predominant species throughout the study) with pre-exposure to PBO indicating partial involvement of oxidases. Between 2014 and 2015 the mean indoor resting density was greater in the deltamethrin + PBO LLIN arm than the deltamethrin LLIN arm at 3.05 (95% CI 3.00–3.10) An. gambiae s.l. per room per day compared with 1.9 (95% CI 1.87–1.97). There was no significant difference in sporozoite rate at 3.97% (95% CI 2.91–5.02) for the deltamethrin LLIN arm and 3.04% (95% CI 2.21–3.87) for deltamethrin + PBO LLIN arm (P = 0.17). However, when analysed by season there was some evidence that the sporozoite rate was lower in the deltamethrin + PBO LLIN arm than deltamethrin LLIN arm during the rainy/high malaria transmission seasons at 1.95% (95% CI 1.18–2.72) and 3.70% (95% CI 2.56–4.84) respectively (P = 0.01). CONCLUSIONS: While there was some evidence that An. gambiae s.l. sporozoite rates were lower in villages with deltamethrin + PBO LLINs during the high malaria transmission seasons of 2014–2015, there was no reduction in parity rates or indoor resting densities. There was also no evidence that permethrin + PBO LLINs provided any improved control when compared with permethrin LLINs. Combination nets may have a greater impact in areas where mixed function oxidases play a more important role in pyrethroid resistance.