Cargando…
Impact of population growth and population ethics on climate change mitigation policy
Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Clima...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699025/ https://www.ncbi.nlm.nih.gov/pubmed/29087298 http://dx.doi.org/10.1073/pnas.1618308114 |
_version_ | 1783280876211142656 |
---|---|
author | Scovronick, Noah Budolfson, Mark B. Dennig, Francis Fleurbaey, Marc Siebert, Asher Socolow, Robert H. Spears, Dean Wagner, Fabian |
author_facet | Scovronick, Noah Budolfson, Mark B. Dennig, Francis Fleurbaey, Marc Siebert, Asher Socolow, Robert H. Spears, Dean Wagner, Fabian |
author_sort | Scovronick, Noah |
collection | PubMed |
description | Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period’s discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing—rather than merely cost savings—again depends on the ethical approach to valuing population. |
format | Online Article Text |
id | pubmed-5699025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-56990252017-11-27 Impact of population growth and population ethics on climate change mitigation policy Scovronick, Noah Budolfson, Mark B. Dennig, Francis Fleurbaey, Marc Siebert, Asher Socolow, Robert H. Spears, Dean Wagner, Fabian Proc Natl Acad Sci U S A Biological Sciences Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period’s discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing—rather than merely cost savings—again depends on the ethical approach to valuing population. National Academy of Sciences 2017-11-14 2017-10-30 /pmc/articles/PMC5699025/ /pubmed/29087298 http://dx.doi.org/10.1073/pnas.1618308114 Text en Copyright © 2017 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Scovronick, Noah Budolfson, Mark B. Dennig, Francis Fleurbaey, Marc Siebert, Asher Socolow, Robert H. Spears, Dean Wagner, Fabian Impact of population growth and population ethics on climate change mitigation policy |
title | Impact of population growth and population ethics on climate change mitigation policy |
title_full | Impact of population growth and population ethics on climate change mitigation policy |
title_fullStr | Impact of population growth and population ethics on climate change mitigation policy |
title_full_unstemmed | Impact of population growth and population ethics on climate change mitigation policy |
title_short | Impact of population growth and population ethics on climate change mitigation policy |
title_sort | impact of population growth and population ethics on climate change mitigation policy |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699025/ https://www.ncbi.nlm.nih.gov/pubmed/29087298 http://dx.doi.org/10.1073/pnas.1618308114 |
work_keys_str_mv | AT scovronicknoah impactofpopulationgrowthandpopulationethicsonclimatechangemitigationpolicy AT budolfsonmarkb impactofpopulationgrowthandpopulationethicsonclimatechangemitigationpolicy AT dennigfrancis impactofpopulationgrowthandpopulationethicsonclimatechangemitigationpolicy AT fleurbaeymarc impactofpopulationgrowthandpopulationethicsonclimatechangemitigationpolicy AT siebertasher impactofpopulationgrowthandpopulationethicsonclimatechangemitigationpolicy AT socolowroberth impactofpopulationgrowthandpopulationethicsonclimatechangemitigationpolicy AT spearsdean impactofpopulationgrowthandpopulationethicsonclimatechangemitigationpolicy AT wagnerfabian impactofpopulationgrowthandpopulationethicsonclimatechangemitigationpolicy |