Cargando…

Spatial distribution of uranium in mice kidneys detected by laser ablation inductively coupled plasma mass spectrometry

The aim of the study is to better understand where uranium deposits in mice kidneys. The spatial distribution of uranium was examined in the kidneys of C57BL/6 mice using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mice were exposed to varying levels of uranyl nitrate in...

Descripción completa

Detalles Bibliográficos
Autores principales: Jim, Venessa, LaViolette, Corinne, Briehl, Margaret M., Ingram, Jani C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699501/
https://www.ncbi.nlm.nih.gov/pubmed/29177200
http://dx.doi.org/10.17145/jab.17.007
Descripción
Sumario:The aim of the study is to better understand where uranium deposits in mice kidneys. The spatial distribution of uranium was examined in the kidneys of C57BL/6 mice using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mice were exposed to varying levels of uranyl nitrate in their drinking water. Calibration standards were developed to allow for semi-quantitative measurement of uranium in the cortical and medullary regions of mice kidney by LA-ICP-MS. Scanning electron microscopy was used to image the ablation patterns on the kidney. Uranium levels were observed to increase in kidney tissue as uranyl nitrate treatment exposure levels increased. A trend towards a higher uranium concentration in the medullary versus cortical region of the kidneys was observed. These results show the usefulness of LA-ICP-MS in toxicity studies by providing a quantitative, spatial assessment of uranium deposition in a target organ.