Cargando…
YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica
Effective metabolic engineering of microorganisms relies on balanced expression of both heterologous and endogenous genes to channel metabolic flux towards products of interest while achieving reasonable biomass buildup. To facilitate combinatorial pathway engineering and facile genetic operation, w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699529/ https://www.ncbi.nlm.nih.gov/pubmed/29188186 http://dx.doi.org/10.1016/j.meteno.2017.09.001 |
_version_ | 1783280955891384320 |
---|---|
author | Wong, Lynn Engel, Jake Jin, Erqing Holdridge, Benjamin Xu, Peng |
author_facet | Wong, Lynn Engel, Jake Jin, Erqing Holdridge, Benjamin Xu, Peng |
author_sort | Wong, Lynn |
collection | PubMed |
description | Effective metabolic engineering of microorganisms relies on balanced expression of both heterologous and endogenous genes to channel metabolic flux towards products of interest while achieving reasonable biomass buildup. To facilitate combinatorial pathway engineering and facile genetic operation, we engineered a set of modular cloning vectors compatible with BioBrick standards, called YaliBricks, to allow for rapid assembly of multigene pathways with customized genetic control elements (promoters, intronic sequences and terminators) in the oleaginous yeast Yarrowia lipolytica. We established a sensitive luciferase reporter and characterized a set of 12 native promoters to expand the oleaginous yeast genetic toolbox for transcriptional fine-tuning. We harnessed the intron alternative splicing mechanism and explored three unique gene configurations that allow us to encode genetic structural variations into metabolic function. We elucidated the role of how these genetic structural variations affect gene expression. To demonstrate the simplicity and effectiveness of streamlined genetic operations, we assembled the 12 kb five-gene violacein biosynthetic pathway in one week. We also expanded this set of vectors to accommodate self-cleavage ribozymes and efficiently deliver guide RNA (gRNA) for targeted genome-editing with a codon-optimized CRISPR-Cas9 nuclease. Taken together, the tools built in this study provide a standard procedure to streamline and accelerate metabolic pathway engineering and genetic circuits construction in Yarrowia lipolytica. |
format | Online Article Text |
id | pubmed-5699529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-56995292017-11-29 YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica Wong, Lynn Engel, Jake Jin, Erqing Holdridge, Benjamin Xu, Peng Metab Eng Commun Article Effective metabolic engineering of microorganisms relies on balanced expression of both heterologous and endogenous genes to channel metabolic flux towards products of interest while achieving reasonable biomass buildup. To facilitate combinatorial pathway engineering and facile genetic operation, we engineered a set of modular cloning vectors compatible with BioBrick standards, called YaliBricks, to allow for rapid assembly of multigene pathways with customized genetic control elements (promoters, intronic sequences and terminators) in the oleaginous yeast Yarrowia lipolytica. We established a sensitive luciferase reporter and characterized a set of 12 native promoters to expand the oleaginous yeast genetic toolbox for transcriptional fine-tuning. We harnessed the intron alternative splicing mechanism and explored three unique gene configurations that allow us to encode genetic structural variations into metabolic function. We elucidated the role of how these genetic structural variations affect gene expression. To demonstrate the simplicity and effectiveness of streamlined genetic operations, we assembled the 12 kb five-gene violacein biosynthetic pathway in one week. We also expanded this set of vectors to accommodate self-cleavage ribozymes and efficiently deliver guide RNA (gRNA) for targeted genome-editing with a codon-optimized CRISPR-Cas9 nuclease. Taken together, the tools built in this study provide a standard procedure to streamline and accelerate metabolic pathway engineering and genetic circuits construction in Yarrowia lipolytica. Elsevier 2017-10-01 /pmc/articles/PMC5699529/ /pubmed/29188186 http://dx.doi.org/10.1016/j.meteno.2017.09.001 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Wong, Lynn Engel, Jake Jin, Erqing Holdridge, Benjamin Xu, Peng YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica |
title | YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica |
title_full | YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica |
title_fullStr | YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica |
title_full_unstemmed | YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica |
title_short | YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica |
title_sort | yalibricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in yarrowia lipolytica |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699529/ https://www.ncbi.nlm.nih.gov/pubmed/29188186 http://dx.doi.org/10.1016/j.meteno.2017.09.001 |
work_keys_str_mv | AT wonglynn yalibricksaversatilegenetictoolkitforstreamlinedandrapidpathwayengineeringinyarrowialipolytica AT engeljake yalibricksaversatilegenetictoolkitforstreamlinedandrapidpathwayengineeringinyarrowialipolytica AT jinerqing yalibricksaversatilegenetictoolkitforstreamlinedandrapidpathwayengineeringinyarrowialipolytica AT holdridgebenjamin yalibricksaversatilegenetictoolkitforstreamlinedandrapidpathwayengineeringinyarrowialipolytica AT xupeng yalibricksaversatilegenetictoolkitforstreamlinedandrapidpathwayengineeringinyarrowialipolytica |