Cargando…

MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner

Mitochondrial antiviral-signaling protein (MAVS) transmits signals from RIG-I-like receptors after RNA virus infections. However, the mechanism by which MAVS activates downstream components, such as TBK1 and IKKα/β, is unclear, although previous work suggests the involvement of NEMO or TBK1-binding...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Run, Jiang, Qifei, Zhou, Xiang, Wang, Chenguang, Guan, Yukun, Tao, Jianli, Xi, Jianzhong, Feng, Ji-Ming, Jiang, Zhengfan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699845/
https://www.ncbi.nlm.nih.gov/pubmed/29125880
http://dx.doi.org/10.1371/journal.ppat.1006720
Descripción
Sumario:Mitochondrial antiviral-signaling protein (MAVS) transmits signals from RIG-I-like receptors after RNA virus infections. However, the mechanism by which MAVS activates downstream components, such as TBK1 and IKKα/β, is unclear, although previous work suggests the involvement of NEMO or TBK1-binding proteins TANK, NAP1, and SINTBAD. Here, we report that MAVS-mediated innate immune activation is dependent on TRAFs, partially on NEMO, but not on TBK1-binding proteins. MAVS recruited TBK1/IKKε by TRAFs that were pre-associated with TBK1/IKKε via direct interaction between the coiled-coil domain of TRAFs and the SDD domain of TBK1/IKKε. TRAF2(−/−)3(−/−)5(−/−)6(−/−) cells completely lost RNA virus responses. TRAFs’ E3 ligase activity was required for NEMO activation by synthesizing ubiquitin chains that bound to NEMO for NF-κB and TBK1/IKKε activation. NEMO-activated IKKα/β were important for TBK1/IKKε activation through IKKα/β-mediated TBK1/IKKε phosphorylation. Moreover, individual TRAFs differently mediated TBK1/IKKε activation and thus fine-tuned antiviral immunity under physiological conditions.