Cargando…

Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway

OBJECTIVE: To explore the correlation between Thymic Stromal Lymphopoietin (TSLP) and the Nuclear Factor- (NF-) κB signaling pathways in bronchial epithelial cells and to clarify whether the traditional Chinese medicine formula Yi-Qi-Ping-Chuan-Fang (YQPC) reduces inflammation by inhibiting TSLP/NF-...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Minye, Tao, Xiang, Ma, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700476/
https://www.ncbi.nlm.nih.gov/pubmed/29250125
http://dx.doi.org/10.1155/2017/3209407
_version_ 1783281126070026240
author Qu, Minye
Tao, Xiang
Ma, Jian
author_facet Qu, Minye
Tao, Xiang
Ma, Jian
author_sort Qu, Minye
collection PubMed
description OBJECTIVE: To explore the correlation between Thymic Stromal Lymphopoietin (TSLP) and the Nuclear Factor- (NF-) κB signaling pathways in bronchial epithelial cells and to clarify whether the traditional Chinese medicine formula Yi-Qi-Ping-Chuan-Fang (YQPC) reduces inflammation by inhibiting TSLP/NF-κB signaling pathways. METHODS: Cells were stimulated with LPS + Poly(I:C) and treated with YQPC. The expressions of TSLP and NF-κB signaling pathways related proteins P65, IκK, IκBa, P-P65, P-IκK, P-IκBa were detected. The effects of NF-κB upstream molecules, Toll-like receptors 3 and 4, myeloid differentiation primary response gene 88 (Myd88), TIR-domain-containing adapter-inducing interferon-β (TRIF), and downstream inflammatory cytokines, TNF-α, IL-1β, IL-6, and IL-8, were assessed. RESULTS: The mRNA and protein expressions of TSLP were significantly increased after LPS + Poly(I:C) stimulation, the total protein IκBa and IκK decreased (P < 0.05), and the phosphorylated protein P-P65, P-IκK, and P-IκBα increased. After YQPC treatment, the expression of TSLP, P-P65, P-IκBa, and P-IκK was significantly inhibited (P < 0.05). The activation of TLR4 and MyD88 decreased, and release of IL-1β, IL-6, IL-8, and TNF-α reduced (P < 0.05). CONCLUSION: In summary, the expression of TSLP is activated by the NF-κB signaling pathway. YQPC alleviated inflammation by inhibiting TSLP through regulating the NF-κB activation and translocation.
format Online
Article
Text
id pubmed-5700476
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-57004762017-12-17 Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway Qu, Minye Tao, Xiang Ma, Jian Evid Based Complement Alternat Med Research Article OBJECTIVE: To explore the correlation between Thymic Stromal Lymphopoietin (TSLP) and the Nuclear Factor- (NF-) κB signaling pathways in bronchial epithelial cells and to clarify whether the traditional Chinese medicine formula Yi-Qi-Ping-Chuan-Fang (YQPC) reduces inflammation by inhibiting TSLP/NF-κB signaling pathways. METHODS: Cells were stimulated with LPS + Poly(I:C) and treated with YQPC. The expressions of TSLP and NF-κB signaling pathways related proteins P65, IκK, IκBa, P-P65, P-IκK, P-IκBa were detected. The effects of NF-κB upstream molecules, Toll-like receptors 3 and 4, myeloid differentiation primary response gene 88 (Myd88), TIR-domain-containing adapter-inducing interferon-β (TRIF), and downstream inflammatory cytokines, TNF-α, IL-1β, IL-6, and IL-8, were assessed. RESULTS: The mRNA and protein expressions of TSLP were significantly increased after LPS + Poly(I:C) stimulation, the total protein IκBa and IκK decreased (P < 0.05), and the phosphorylated protein P-P65, P-IκK, and P-IκBα increased. After YQPC treatment, the expression of TSLP, P-P65, P-IκBa, and P-IκK was significantly inhibited (P < 0.05). The activation of TLR4 and MyD88 decreased, and release of IL-1β, IL-6, IL-8, and TNF-α reduced (P < 0.05). CONCLUSION: In summary, the expression of TSLP is activated by the NF-κB signaling pathway. YQPC alleviated inflammation by inhibiting TSLP through regulating the NF-κB activation and translocation. Hindawi 2017 2017-11-09 /pmc/articles/PMC5700476/ /pubmed/29250125 http://dx.doi.org/10.1155/2017/3209407 Text en Copyright © 2017 Minye Qu et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Qu, Minye
Tao, Xiang
Ma, Jian
Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway
title Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway
title_full Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway
title_fullStr Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway
title_full_unstemmed Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway
title_short Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway
title_sort yi-qi-ping-chuan-fang reduces tslp elevation caused by lps + poly(i:c) via inhibiting tlr4/myd88/nf-κb signaling pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700476/
https://www.ncbi.nlm.nih.gov/pubmed/29250125
http://dx.doi.org/10.1155/2017/3209407
work_keys_str_mv AT quminye yiqipingchuanfangreducestslpelevationcausedbylpspolyicviainhibitingtlr4myd88nfkbsignalingpathway
AT taoxiang yiqipingchuanfangreducestslpelevationcausedbylpspolyicviainhibitingtlr4myd88nfkbsignalingpathway
AT majian yiqipingchuanfangreducestslpelevationcausedbylpspolyicviainhibitingtlr4myd88nfkbsignalingpathway