Cargando…
Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway
OBJECTIVE: To explore the correlation between Thymic Stromal Lymphopoietin (TSLP) and the Nuclear Factor- (NF-) κB signaling pathways in bronchial epithelial cells and to clarify whether the traditional Chinese medicine formula Yi-Qi-Ping-Chuan-Fang (YQPC) reduces inflammation by inhibiting TSLP/NF-...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700476/ https://www.ncbi.nlm.nih.gov/pubmed/29250125 http://dx.doi.org/10.1155/2017/3209407 |
_version_ | 1783281126070026240 |
---|---|
author | Qu, Minye Tao, Xiang Ma, Jian |
author_facet | Qu, Minye Tao, Xiang Ma, Jian |
author_sort | Qu, Minye |
collection | PubMed |
description | OBJECTIVE: To explore the correlation between Thymic Stromal Lymphopoietin (TSLP) and the Nuclear Factor- (NF-) κB signaling pathways in bronchial epithelial cells and to clarify whether the traditional Chinese medicine formula Yi-Qi-Ping-Chuan-Fang (YQPC) reduces inflammation by inhibiting TSLP/NF-κB signaling pathways. METHODS: Cells were stimulated with LPS + Poly(I:C) and treated with YQPC. The expressions of TSLP and NF-κB signaling pathways related proteins P65, IκK, IκBa, P-P65, P-IκK, P-IκBa were detected. The effects of NF-κB upstream molecules, Toll-like receptors 3 and 4, myeloid differentiation primary response gene 88 (Myd88), TIR-domain-containing adapter-inducing interferon-β (TRIF), and downstream inflammatory cytokines, TNF-α, IL-1β, IL-6, and IL-8, were assessed. RESULTS: The mRNA and protein expressions of TSLP were significantly increased after LPS + Poly(I:C) stimulation, the total protein IκBa and IκK decreased (P < 0.05), and the phosphorylated protein P-P65, P-IκK, and P-IκBα increased. After YQPC treatment, the expression of TSLP, P-P65, P-IκBa, and P-IκK was significantly inhibited (P < 0.05). The activation of TLR4 and MyD88 decreased, and release of IL-1β, IL-6, IL-8, and TNF-α reduced (P < 0.05). CONCLUSION: In summary, the expression of TSLP is activated by the NF-κB signaling pathway. YQPC alleviated inflammation by inhibiting TSLP through regulating the NF-κB activation and translocation. |
format | Online Article Text |
id | pubmed-5700476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-57004762017-12-17 Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway Qu, Minye Tao, Xiang Ma, Jian Evid Based Complement Alternat Med Research Article OBJECTIVE: To explore the correlation between Thymic Stromal Lymphopoietin (TSLP) and the Nuclear Factor- (NF-) κB signaling pathways in bronchial epithelial cells and to clarify whether the traditional Chinese medicine formula Yi-Qi-Ping-Chuan-Fang (YQPC) reduces inflammation by inhibiting TSLP/NF-κB signaling pathways. METHODS: Cells were stimulated with LPS + Poly(I:C) and treated with YQPC. The expressions of TSLP and NF-κB signaling pathways related proteins P65, IκK, IκBa, P-P65, P-IκK, P-IκBa were detected. The effects of NF-κB upstream molecules, Toll-like receptors 3 and 4, myeloid differentiation primary response gene 88 (Myd88), TIR-domain-containing adapter-inducing interferon-β (TRIF), and downstream inflammatory cytokines, TNF-α, IL-1β, IL-6, and IL-8, were assessed. RESULTS: The mRNA and protein expressions of TSLP were significantly increased after LPS + Poly(I:C) stimulation, the total protein IκBa and IκK decreased (P < 0.05), and the phosphorylated protein P-P65, P-IκK, and P-IκBα increased. After YQPC treatment, the expression of TSLP, P-P65, P-IκBa, and P-IκK was significantly inhibited (P < 0.05). The activation of TLR4 and MyD88 decreased, and release of IL-1β, IL-6, IL-8, and TNF-α reduced (P < 0.05). CONCLUSION: In summary, the expression of TSLP is activated by the NF-κB signaling pathway. YQPC alleviated inflammation by inhibiting TSLP through regulating the NF-κB activation and translocation. Hindawi 2017 2017-11-09 /pmc/articles/PMC5700476/ /pubmed/29250125 http://dx.doi.org/10.1155/2017/3209407 Text en Copyright © 2017 Minye Qu et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Qu, Minye Tao, Xiang Ma, Jian Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway |
title | Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway |
title_full | Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway |
title_fullStr | Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway |
title_full_unstemmed | Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway |
title_short | Yi-Qi-Ping-Chuan-Fang Reduces TSLP Elevation Caused by LPS + Poly(I:C) via Inhibiting TLR4/MYD88/NF-κB Signaling Pathway |
title_sort | yi-qi-ping-chuan-fang reduces tslp elevation caused by lps + poly(i:c) via inhibiting tlr4/myd88/nf-κb signaling pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700476/ https://www.ncbi.nlm.nih.gov/pubmed/29250125 http://dx.doi.org/10.1155/2017/3209407 |
work_keys_str_mv | AT quminye yiqipingchuanfangreducestslpelevationcausedbylpspolyicviainhibitingtlr4myd88nfkbsignalingpathway AT taoxiang yiqipingchuanfangreducestslpelevationcausedbylpspolyicviainhibitingtlr4myd88nfkbsignalingpathway AT majian yiqipingchuanfangreducestslpelevationcausedbylpspolyicviainhibitingtlr4myd88nfkbsignalingpathway |