Cargando…

Transcriptomic profiling and genetic analyses reveal novel key regulators of cellulase and xylanase gene expression in Penicillium oxalicum

BACKGROUND: The transition to a more environmentally friendly economy has prompted studies of modern biorefineries, including the utilization of low-value lignocellulose. The major challenge facing the widespread application of biorefineries is the high cost of enzymes that can efficiently hydrolyze...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Yu-Si, Zhao, Shuai, Liao, Lu-Sheng, He, Qi-Peng, Xiong, Ya-Ru, Wang, Long, Li, Cheng-Xi, Feng, Jia-Xun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700522/
https://www.ncbi.nlm.nih.gov/pubmed/29201143
http://dx.doi.org/10.1186/s13068-017-0966-y
Descripción
Sumario:BACKGROUND: The transition to a more environmentally friendly economy has prompted studies of modern biorefineries, including the utilization of low-value lignocellulose. The major challenge facing the widespread application of biorefineries is the high cost of enzymes that can efficiently hydrolyze recalcitrant cellulose to sugars. Penicillium oxalicum produces large amounts of plant-cell-wall-degrading enzymes, but their production is tightly controlled by complex regulatory networks, resulting in low yields of the native enzymes. Regulatory genes have been the targets of genetic engineering to improve enzyme production in microorganisms. In this study, we used transcriptomic profiling and genetic analyses to screen for and identify novel key regulators of cellulase and xylanase gene expression in P. oxalicum. RESULTS: A comparative analysis of the transcriptomes of P. oxalicum HP7-1 on different carbon sources, including glucose, wheat bran, and wheat bran plus Avicel, identified 40 candidate genes regulating the expression of cellulolytic enzyme genes. Deletion mutants of 31 candidate genes were constructed in P. oxalicum ∆PoxKu70 and 11 resultant mutants showed significant changes in their filter-paper cellulase production compared with the parental strain ∆PoxKu70. Among these 11 mutants, ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD showed the most significant reduction in the enzyme production (96.8, 75.9, and 58.5%, respectively). Ten of these 11 genes are here reported to be involved in cellulase production for the first time. Further tests revealed that ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD displayed significantly reduced xylanase production, whereas ΔPoxCxrA produced negligible xylanase. Interestingly, ΔPoxCxrB and ΔPoxNsdD showed significantly increased β-glucosidase production. Real-time quantitative reverse transcription–PCR and an electrophoretic mobility shift assay (EMSA) showed that PoxCxrA, PoxCxrB, and PoxNsdD regulate the expression of one another, but the mode of regulation changes dynamically during the growth of fungal cells in the presence of cellulose. EMSA showed that PoxCxrA, PoxCxrB, and PoxNsdD directly bind the putative promoters of major cellulase and xylanase genes. CONCLUSIONS: We have detected and identified three key new regulatory genes, PoxCxrA, PoxCxrB, and PoxNsdD, that directly and indirectly regulate the expression of cellulase and xylanase genes in P. oxalicum. This study provides novel insights into the regulatory mechanisms of fungal cellulase and xylanase gene expression. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13068-017-0966-y) contains supplementary material, which is available to authorized users.