Cargando…
A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method
Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as...
Autores principales: | Yang, Jun-He, Cheng, Ching-Hsue, Chan, Chia-Pan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700551/ https://www.ncbi.nlm.nih.gov/pubmed/29250110 http://dx.doi.org/10.1155/2017/8734214 |
Ejemplares similares
-
Forecasting leading industry stock prices based on a hybrid time-series forecast model
por: Tsai, Ming-Chi, et al.
Publicado: (2018) -
Uncertain imputation for time-series forecasting: Application to COVID-19 daily mortality prediction
por: Elimam, Rayane, et al.
Publicado: (2022) -
A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress
por: Cheng, Ching-Hsue, et al.
Publicado: (2018) -
ImputeGAN: Generative Adversarial Network for Multivariate Time Series Imputation
por: Qin, Rui, et al.
Publicado: (2023) -
Time series forecasting methods in emergency contexts
por: Villoria Hernandez, P., et al.
Publicado: (2023)