Cargando…
Comorbidity index in central cancer registries: the value of hospital discharge data
BACKGROUND: The presence of comorbid medical conditions can significantly affect a cancer patient’s treatment options, quality of life, and survival. However, these important data are often lacking from population-based cancer registries. Leveraging routine linkage to hospital discharge data, a como...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700816/ https://www.ncbi.nlm.nih.gov/pubmed/29200890 http://dx.doi.org/10.2147/CLEP.S146395 |
_version_ | 1783281204289601536 |
---|---|
author | Lichtensztajn, Daphne Y Giddings, Brenda M Morris, Cyllene R Parikh-Patel, Arti Kizer, Kenneth W |
author_facet | Lichtensztajn, Daphne Y Giddings, Brenda M Morris, Cyllene R Parikh-Patel, Arti Kizer, Kenneth W |
author_sort | Lichtensztajn, Daphne Y |
collection | PubMed |
description | BACKGROUND: The presence of comorbid medical conditions can significantly affect a cancer patient’s treatment options, quality of life, and survival. However, these important data are often lacking from population-based cancer registries. Leveraging routine linkage to hospital discharge data, a comorbidity score was calculated for patients in the California Cancer Registry (CCR) database. METHODS: California cancer cases diagnosed between 1991 and 2013 were linked to statewide hospital discharge data. A Deyo and Romano adapted Charlson Comorbidity Index was calculated for each case, and the association of comorbidity score with overall survival was assessed with Kaplan–Meier curves and Cox proportional hazards models. Using a subset of Medicare-enrolled CCR cases, the index was validated against a comorbidity score derived using Surveillance, Epidemiology, and End Results (SEER)-Medicare linked data. RESULTS: A comorbidity score was calculated for 71% of CCR cases. The majority (60.2%) had no relevant comorbidities. Increasing comorbidity score was associated with poorer overall survival. In a multivariable model, high comorbidity conferred twice the risk of death compared to no comorbidity (hazard ratio 2.33, 95% CI: 2.32–2.34). In the subset of patients with a SEER-Medicare-derived score, the sensitivity of the hospital discharge-based index for detecting any comorbidity was 76.5. The association between overall mortality and comorbidity score was stronger for the hospital discharge-based score than for the SEER-Medicare-derived index, and the predictive ability of the hospital discharge-based score, as measured by Harrell’s C index, was also slightly better for the hospital discharge-based score (C index 0.62 versus 0.59, P<0.001). CONCLUSIONS: Despite some limitations, using hospital discharge data to construct a comorbidity index for cancer registries is a feasible and valid method to enhance registry data, which can provide important clinically relevant information for population-based cancer outcomes research. |
format | Online Article Text |
id | pubmed-5700816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57008162017-11-30 Comorbidity index in central cancer registries: the value of hospital discharge data Lichtensztajn, Daphne Y Giddings, Brenda M Morris, Cyllene R Parikh-Patel, Arti Kizer, Kenneth W Clin Epidemiol Original Research BACKGROUND: The presence of comorbid medical conditions can significantly affect a cancer patient’s treatment options, quality of life, and survival. However, these important data are often lacking from population-based cancer registries. Leveraging routine linkage to hospital discharge data, a comorbidity score was calculated for patients in the California Cancer Registry (CCR) database. METHODS: California cancer cases diagnosed between 1991 and 2013 were linked to statewide hospital discharge data. A Deyo and Romano adapted Charlson Comorbidity Index was calculated for each case, and the association of comorbidity score with overall survival was assessed with Kaplan–Meier curves and Cox proportional hazards models. Using a subset of Medicare-enrolled CCR cases, the index was validated against a comorbidity score derived using Surveillance, Epidemiology, and End Results (SEER)-Medicare linked data. RESULTS: A comorbidity score was calculated for 71% of CCR cases. The majority (60.2%) had no relevant comorbidities. Increasing comorbidity score was associated with poorer overall survival. In a multivariable model, high comorbidity conferred twice the risk of death compared to no comorbidity (hazard ratio 2.33, 95% CI: 2.32–2.34). In the subset of patients with a SEER-Medicare-derived score, the sensitivity of the hospital discharge-based index for detecting any comorbidity was 76.5. The association between overall mortality and comorbidity score was stronger for the hospital discharge-based score than for the SEER-Medicare-derived index, and the predictive ability of the hospital discharge-based score, as measured by Harrell’s C index, was also slightly better for the hospital discharge-based score (C index 0.62 versus 0.59, P<0.001). CONCLUSIONS: Despite some limitations, using hospital discharge data to construct a comorbidity index for cancer registries is a feasible and valid method to enhance registry data, which can provide important clinically relevant information for population-based cancer outcomes research. Dove Medical Press 2017-11-20 /pmc/articles/PMC5700816/ /pubmed/29200890 http://dx.doi.org/10.2147/CLEP.S146395 Text en © 2017 Lichtensztajn et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Lichtensztajn, Daphne Y Giddings, Brenda M Morris, Cyllene R Parikh-Patel, Arti Kizer, Kenneth W Comorbidity index in central cancer registries: the value of hospital discharge data |
title | Comorbidity index in central cancer registries: the value of hospital discharge data |
title_full | Comorbidity index in central cancer registries: the value of hospital discharge data |
title_fullStr | Comorbidity index in central cancer registries: the value of hospital discharge data |
title_full_unstemmed | Comorbidity index in central cancer registries: the value of hospital discharge data |
title_short | Comorbidity index in central cancer registries: the value of hospital discharge data |
title_sort | comorbidity index in central cancer registries: the value of hospital discharge data |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700816/ https://www.ncbi.nlm.nih.gov/pubmed/29200890 http://dx.doi.org/10.2147/CLEP.S146395 |
work_keys_str_mv | AT lichtensztajndaphney comorbidityindexincentralcancerregistriesthevalueofhospitaldischargedata AT giddingsbrendam comorbidityindexincentralcancerregistriesthevalueofhospitaldischargedata AT morriscyllener comorbidityindexincentralcancerregistriesthevalueofhospitaldischargedata AT parikhpatelarti comorbidityindexincentralcancerregistriesthevalueofhospitaldischargedata AT kizerkennethw comorbidityindexincentralcancerregistriesthevalueofhospitaldischargedata |