Cargando…

Simulating quantum light propagation through atomic ensembles using matrix product states

A powerful method to interface quantum light with matter is to propagate the light through an ensemble of atoms. Recently, a number of such interfaces have emerged, most prominently Rydberg ensembles, that enable strong nonlinear interactions between propagating photons. A largely open problem is wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Manzoni, Marco T., Chang, Darrick E., Douglas, James S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700945/
https://www.ncbi.nlm.nih.gov/pubmed/29170367
http://dx.doi.org/10.1038/s41467-017-01416-4
Descripción
Sumario:A powerful method to interface quantum light with matter is to propagate the light through an ensemble of atoms. Recently, a number of such interfaces have emerged, most prominently Rydberg ensembles, that enable strong nonlinear interactions between propagating photons. A largely open problem is whether these systems produce exotic many-body states of light and developing new tools to study propagation in the large photon number limit is highly desirable. Here we provide a method based on a “spin model” that maps quasi one-dimensional (1D) light propagation to the dynamics of an open 1D interacting spin system, where all photon correlations are obtained from those of the spins. The spin dynamics in turn are numerically solved using the toolbox of matrix product states. We apply this formalism to investigate vacuum induced transparency, wherein the different photon number components of a pulse propagate with number-dependent group velocity and separate at output.