Cargando…
Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding dri...
Autores principales: | Lu, Xinguo, Lu, Jibo, Liao, Bo, Li, Xing, Qian, Xin, Li, Keqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700962/ https://www.ncbi.nlm.nih.gov/pubmed/29170526 http://dx.doi.org/10.1038/s41598-017-16286-5 |
Ejemplares similares
-
The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes
por: Lu, Xinguo, et al.
Publicado: (2018) -
Identification of Driver Genes and miRNAs in Ovarian Cancer through an Integrated In-Silico Approach
por: Beg, Anam, et al.
Publicado: (2023) -
Identification of recurrent focal copy number variations and their putative targeted driver genes in ovarian cancer
por: Zhang, Liangcai, et al.
Publicado: (2016) -
Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: Analysis of the androgen receptor
por: Sun, Nian-Kang, et al.
Publicado: (2015) -
AlloDriver: a method for the identification and analysis of cancer driver targets
por: Song, Kun, et al.
Publicado: (2019)