Cargando…
Two-photon polymerization enabled multi-layer liquid crystal phase modulator
The performance of liquid crystal (LC) spatial light modulators depends critically on the amount of cumulative phase change. However, for regular phase modulators, a large phase change comes with a slow time response penalty. A multi-layer liquid crystal (LC) spatial light modulator offers a large p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701147/ https://www.ncbi.nlm.nih.gov/pubmed/29176729 http://dx.doi.org/10.1038/s41598-017-16596-8 |
Sumario: | The performance of liquid crystal (LC) spatial light modulators depends critically on the amount of cumulative phase change. However, for regular phase modulators, a large phase change comes with a slow time response penalty. A multi-layer liquid crystal (LC) spatial light modulator offers a large phase change while keeping fast response time due to the decoupling between phase change and time response through engineered sub-micron scaffold. Here, we demonstrate specially designed 2- and 3-layer LC cells which can achieve 4 times and 7 times faster response time than that of conventional single-layer LC phase modulator of equivalent thickness, respectively. A versatile two-photon laser lithography is employed for LC cell scaffolding to accurately verify theoretical predictions with experimental measurements. |
---|