Cargando…
Nanocarrier-mediated delivery of α-mangostin for non-surgical castration of male animals
The overpopulation of abandoned and stray companion animals has become a global crisis. The main purpose of this study was to develop a novel nanomedicine-based antifertility compound for non-surgical castration of male animals. Mangosteen (Garcinia mangostana L) pericarp extract has been shown to e...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701201/ https://www.ncbi.nlm.nih.gov/pubmed/29176590 http://dx.doi.org/10.1038/s41598-017-16563-3 |
Sumario: | The overpopulation of abandoned and stray companion animals has become a global crisis. The main purpose of this study was to develop a novel nanomedicine-based antifertility compound for non-surgical castration of male animals. Mangosteen (Garcinia mangostana L) pericarp extract has been shown to exhibit anti-fertility property. α-mangostin (AM)-loaded nanostructured lipid carrier (AM-NLC) was developed to improve male germ cell apoptosis. This study was conducted to investigate physicochemical properties of AM-NLC and determine the biological effects of AM-NLC on spermatogonia cells and testicular explants obtained from castrated testes. AM-NLC was produced through a hot homogenization technique. The negatively charged particle of AM-NLC was nano-sized with a narrow dispersity. AM-NLC exhibited antiproliferative activity towards spermatogonium cells. It induced apoptosis in the cells. In addition, AM-NLC exhibited anti-inflammatory activities in lipopolysaccharide-activated macrophages. Abnormal anatomy of seminiferous tubule was noted following treatment of testicular explant with AM-NLC. This nanomedicine-based sterilant would be a promising platform that may have utility in non-surgical castration of male animals by intra-testicular injection. |
---|