Cargando…
Recursive Exponentially Weighted N-way Partial Least Squares Regression with Recursive-Validation of Hyper-Parameters in Brain-Computer Interface Applications
A tensor-input/tensor-output Recursive Exponentially Weighted N-Way Partial Least Squares (REW-NPLS) regression algorithm is proposed for high dimension multi-way (tensor) data treatment and adaptive modeling of complex processes in real-time. The method unites fast and efficient calculation schemes...
Autores principales: | Eliseyev, Andrey, Auboiroux, Vincent, Costecalde, Thomas, Langar, Lilia, Charvet, Guillaume, Mestais, Corinne, Aksenova, Tetiana, Benabid, Alim-Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701264/ https://www.ncbi.nlm.nih.gov/pubmed/29176638 http://dx.doi.org/10.1038/s41598-017-16579-9 |
Ejemplares similares
-
Recursive N-Way Partial Least Squares for Brain-Computer Interface
por: Eliseyev, Andrey, et al.
Publicado: (2013) -
Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI
por: Moly, Alexandre, et al.
Publicado: (2023) -
Minibatch Recursive Least Squares Q-Learning
por: Zhang, Chunyuan, et al.
Publicado: (2021) -
Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording
por: Eliseyev, Andrey, et al.
Publicado: (2016) -
Recursive least squares background prediction of univariate syndromic surveillance data
por: Najmi, Amir-Homayoon, et al.
Publicado: (2009)