Cargando…
α-Synuclein-Dependent Calcium Entry Underlies Differential Sensitivity of Cultured SN and VTA Dopaminergic Neurons to a Parkinsonian Neurotoxin
Parkinson’s disease (PD) is a debilitating neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra (SN). Although mitochondrial dysfunction and dysregulated α-synuclein (aSyn) expression are postulated to play a role in PD pathogenesis, it is still debated w...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701296/ https://www.ncbi.nlm.nih.gov/pubmed/29177188 http://dx.doi.org/10.1523/ENEURO.0167-17.2017 |
Sumario: | Parkinson’s disease (PD) is a debilitating neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra (SN). Although mitochondrial dysfunction and dysregulated α-synuclein (aSyn) expression are postulated to play a role in PD pathogenesis, it is still debated why neurons of the SN are targeted while neighboring dopaminergic neurons of the ventral tegmental area (VTA) are spared. Using electrochemical and imaging approaches, we investigated metabolic changes in cultured primary mouse midbrain dopaminergic neurons exposed to a parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP(+)). We demonstrate that the higher level of neurotoxicity in SN than VTA neurons was due to SN neuron-specific toxin-induced increase in cytosolic dopamine (DA) and Ca(2+), followed by an elevation of mitochondrial Ca(2+), activation of nitric oxide synthase (NOS), and mitochondrial oxidation. The increase in cytosolic Ca(2+) was not caused by MPP(+)-induced oxidative stress, but rather depended on the activity of both L-type calcium channels and aSyn expression, suggesting that these two established pathogenic factors in PD act in concert. |
---|