Cargando…

Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion

BACKGROUND: The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin se...

Descripción completa

Detalles Bibliográficos
Autores principales: Soares, Juliana Mikaelly Dias, Pereira Leal, Ana Ediléia Barbosa, Silva, Juliane Cabral, Almeida, Jackson R. G. S., de Oliveira, Helinando Pequeno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701404/
https://www.ncbi.nlm.nih.gov/pubmed/29200726
http://dx.doi.org/10.4103/pm.pm_87_17
Descripción
Sumario:BACKGROUND: The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. OBJECTIVE: To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. METHODS: The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. RESULTS: Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. CONCLUSION: According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. SUMMARY: The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes control. In addition to their typical antioxidant properties, flavonoids contribute to the insulin secretion. The modulation of insulin secretion is induced by flavonoids according to different mechanisms. [Image: see text] Abbreviations used: K(ATP) channels: ATP-sensitive K(+) channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca(+2) channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca(2+)/calmodulin-dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6’-methoxy-3’,5’-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.