Cargando…
A modified GC-specific MAKER gene annotation method reveals improved and novel gene predictions of high and low GC content in Oryza sativa
BACKGROUND: Accurate structural annotation depends on well-trained gene prediction programs. Training data for gene prediction programs are often chosen randomly from a subset of high-quality genes that ideally represent the variation found within a genome. One aspect of gene variation is GC content...
Autores principales: | Bowman, Megan J., Pulman, Jane A., Liu, Tiffany L., Childs, Kevin L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702205/ https://www.ncbi.nlm.nih.gov/pubmed/29178822 http://dx.doi.org/10.1186/s12859-017-1942-z |
Ejemplares similares
-
GPRED-GC: a Gene PREDiction model accounting for 5 (′)- 3(′) GC gradient
por: Techa-Angkoon, Prapaporn, et al.
Publicado: (2019) -
Key-Marker Volatile Compounds in Aromatic Rice (Oryza sativa) Grains: An HS-SPME Extraction Method Combined with GC×GC-TOFMS
por: Setyaningsih, Widiastuti, et al.
Publicado: (2019) -
The isolation of early nuclear endosperm of Oryza sativa to facilitate gene expression analysis and screening imprinted genes
por: Kuang, Quan, et al.
Publicado: (2015) -
A modified data normalization method for GC-MS-based metabolomics to minimize batch variation
por: Chen, Mingjie, et al.
Publicado: (2014) -
Mutational Biases and GC-Biased Gene Conversion Affect GC Content in the Plastomes of Dendrobium Genus
por: Niu, Zhitao, et al.
Publicado: (2017)