Cargando…

A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI

A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter a...

Descripción completa

Detalles Bibliográficos
Autores principales: Castillo-Barnes, Diego, Peis, Ignacio, Martínez-Murcia, Francisco J., Segovia, Fermín, Illán, Ignacio A., Górriz, Juan M., Ramírez, Javier, Salas-Gonzalez, Diego
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702363/
https://www.ncbi.nlm.nih.gov/pubmed/29209194
http://dx.doi.org/10.3389/fninf.2017.00066
_version_ 1783281512576188416
author Castillo-Barnes, Diego
Peis, Ignacio
Martínez-Murcia, Francisco J.
Segovia, Fermín
Illán, Ignacio A.
Górriz, Juan M.
Ramírez, Javier
Salas-Gonzalez, Diego
author_facet Castillo-Barnes, Diego
Peis, Ignacio
Martínez-Murcia, Francisco J.
Segovia, Fermín
Illán, Ignacio A.
Górriz, Juan M.
Ramírez, Javier
Salas-Gonzalez, Diego
author_sort Castillo-Barnes, Diego
collection PubMed
description A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy tails. In this work, we present a hidden Markov random field model with expectation maximization (EM-HMRF) modeling the components using the α-stable distribution. The proposed model is a generalization of the widely used EM-HMRF algorithm with Gaussian distributions. We test the α-stable EM-HMRF model in synthetic data and brain MRI data. The proposed methodology presents two main advantages: Firstly, it is more robust to outliers. Secondly, we obtain similar results than using Gaussian when the Gaussian assumption holds. This approach is able to model the spatial dependence between neighboring voxels in tomographic brain MRI.
format Online
Article
Text
id pubmed-5702363
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-57023632017-12-05 A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI Castillo-Barnes, Diego Peis, Ignacio Martínez-Murcia, Francisco J. Segovia, Fermín Illán, Ignacio A. Górriz, Juan M. Ramírez, Javier Salas-Gonzalez, Diego Front Neuroinform Neuroscience A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy tails. In this work, we present a hidden Markov random field model with expectation maximization (EM-HMRF) modeling the components using the α-stable distribution. The proposed model is a generalization of the widely used EM-HMRF algorithm with Gaussian distributions. We test the α-stable EM-HMRF model in synthetic data and brain MRI data. The proposed methodology presents two main advantages: Firstly, it is more robust to outliers. Secondly, we obtain similar results than using Gaussian when the Gaussian assumption holds. This approach is able to model the spatial dependence between neighboring voxels in tomographic brain MRI. Frontiers Media S.A. 2017-11-21 /pmc/articles/PMC5702363/ /pubmed/29209194 http://dx.doi.org/10.3389/fninf.2017.00066 Text en Copyright © 2017 Castillo-Barnes, Peis, Martínez-Murcia, Segovia, Illán, Górriz, Ramírez and Salas-Gonzalez. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Castillo-Barnes, Diego
Peis, Ignacio
Martínez-Murcia, Francisco J.
Segovia, Fermín
Illán, Ignacio A.
Górriz, Juan M.
Ramírez, Javier
Salas-Gonzalez, Diego
A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
title A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
title_full A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
title_fullStr A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
title_full_unstemmed A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
title_short A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
title_sort heavy tailed expectation maximization hidden markov random field model with applications to segmentation of mri
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702363/
https://www.ncbi.nlm.nih.gov/pubmed/29209194
http://dx.doi.org/10.3389/fninf.2017.00066
work_keys_str_mv AT castillobarnesdiego aheavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT peisignacio aheavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT martinezmurciafranciscoj aheavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT segoviafermin aheavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT illanignacioa aheavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT gorrizjuanm aheavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT ramirezjavier aheavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT salasgonzalezdiego aheavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT castillobarnesdiego heavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT peisignacio heavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT martinezmurciafranciscoj heavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT segoviafermin heavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT illanignacioa heavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT gorrizjuanm heavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT ramirezjavier heavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri
AT salasgonzalezdiego heavytailedexpectationmaximizationhiddenmarkovrandomfieldmodelwithapplicationstosegmentationofmri