Cargando…
A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter a...
Autores principales: | Castillo-Barnes, Diego, Peis, Ignacio, Martínez-Murcia, Francisco J., Segovia, Fermín, Illán, Ignacio A., Górriz, Juan M., Ramírez, Javier, Salas-Gonzalez, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702363/ https://www.ncbi.nlm.nih.gov/pubmed/29209194 http://dx.doi.org/10.3389/fninf.2017.00066 |
Ejemplares similares
-
Preprocessing of (18)F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution
por: Segovia, Fermín, et al.
Publicado: (2017) -
Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases
por: Martinez-Murcia, Francisco J., et al.
Publicado: (2017) -
Robust Ensemble Classification Methodology for I123-Ioflupane SPECT Images and Multiple Heterogeneous Biomarkers in the Diagnosis of Parkinson's Disease
por: Castillo-Barnes, Diego, et al.
Publicado: (2018) -
Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks
por: Segovia, Fermín, et al.
Publicado: (2015) -
Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization (EM) training and Viterbi training
por: Lam, Tin Y, et al.
Publicado: (2010)